Acoustic fragmentation of therapeutic contrast agents designed for localized drug delivery

Author(s):  
D. May ◽  
J. Allen ◽  
J. Gut ◽  
K. Ferrara
2020 ◽  
Vol 27 (6) ◽  
pp. 854-902 ◽  
Author(s):  
Raluca Ion ◽  
Madalina Georgiana Necula ◽  
Anca Mazare ◽  
Valentina Mitran ◽  
Patricia Neacsu ◽  
...  

TiO2 nanotubes (TNTs) are attractive nanostructures for localized drug delivery. Owing to their excellent biocompatibility and physicochemical properties, numerous functionalizations of TNTs have been attempted for their use as therapeutic agent delivery platforms. In this review, we discuss the current advances in the applications of TNT-based delivery systems with an emphasis on the various functionalizations of TNTs for enhancing osteogenesis at the bone-implant interface and for preventing implant-related infection. Innovation of therapies for enhancing osteogenesis still represents a critical challenge in regeneration of bone defects. The overall concept focuses on the use of osteoconductive materials in combination with the use of osteoinductive or osteopromotive factors. In this context, we highlight the strategies for improving the functionality of TNTs, using five classes of bioactive agents: growth factors (GFs), statins, plant derived molecules, inorganic therapeutic ions/nanoparticles (NPs) and antimicrobial compounds.


2009 ◽  
Vol 96 (3) ◽  
pp. 687a ◽  
Author(s):  
Eva Christabel Williams ◽  
Ryan Toomey ◽  
Norma Alcantar

2010 ◽  
Vol 1257 ◽  
Author(s):  
Andrea Fornara ◽  
Alberto Recalenda ◽  
Jian Qin ◽  
Abhilash Sugunan ◽  
Fei Ye ◽  
...  

AbstractNanoparticles consisting of different biocompatible materials are attracting a lot of interest in the biomedical area as useful tools for drug delivery, photo-therapy and contrast enhancement agents in MRI, fluorescence and confocal microscopy. This work mainly focuses on the synthesis of polymeric/inorganic multifunctional nanoparticles (PIMN) based on biocompatible di-block copolymer poly(L,L-lactide-co-ethylene glycol) (PLLA-PEG) via an emulsion-evaporation method. Besides containing a hydrophobic drug (Indomethacin), these polymeric nanoparticles incorporate different visualization agents such as superparamagnetic iron oxide nanoparticles (SPION) and fluorescent Quantum Dots (QDs) that are used as contrast agents for Magnetic Resonance Imaging (MRI) and fluorescence microscopy together. Gold Nanorods are also incorporated in such nanostructures to allow simultaneous visualization and photodynamic therapy. MRI studies are performed with different loading of SPION into PIMN, showing an enhancement in T2 contrast superior to commercial contrast agents. Core-shell QDs absorption and emission spectra are recorded before and after their loading into PIMN. With these polymeric/inorganic multifunctional nanoparticles, both MRI visualization and confocal fluorescence microscopy studies can be performed. Gold nanorods are also synthesized and incorporated into PIMN without changing their longitudinal absorption peak usable for lased excitation and phototherapy. In-vitro cytotoxicity studies have also been performed to confirm the low cytotoxicity of PIMN for further in-vivo studies.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3580
Author(s):  
Chuda Chittasupho ◽  
Jakrapong Angklomklew ◽  
Thanu Thongnopkoon ◽  
Wongwit Senavongse ◽  
Pensak Jantrawut ◽  
...  

A hydrogel scaffold is a localized drug delivery system that can maintain the therapeutic level of drug concentration at the tumor site. In this study, the biopolymer hydrogel scaffold encapsulating doxorubicin was fabricated from gelatin, sodium carboxymethyl cellulose, and gelatin/sodium carboxymethyl cellulose mixture using a lyophilization technique. The effects of a crosslinker on scaffold morphology and pore size were determined using scanning electron microscopy. The encapsulation efficiency and the release profile of doxorubicin from the hydrogel scaffolds were determined using UV-Vis spectrophotometry. The anti-proliferative effect of the scaffolds against the lung cancer cell line was investigated using an MTT assay. The results showed that scaffolds made from different types of natural polymer had different pore configurations and pore sizes. All scaffolds had high encapsulation efficiency and drug-controlled release profiles. The viability and proliferation of A549 cells, treated with gelatin, gelatin/SCMC, and SCMC scaffolds containing doxorubicin significantly decreased compared with control. These hydrogel scaffolds might provide a promising approach for developing a superior localized drug delivery system to kill lung cancer cells.


2009 ◽  
Vol 9 (8) ◽  
pp. 786-794 ◽  
Author(s):  
Laurianne Timbart ◽  
M. Yat Tse ◽  
Stephen C. Pang ◽  
Oladunni Babasola ◽  
Brian G. Amsden

Sign in / Sign up

Export Citation Format

Share Document