In-vitro ultrasound temperature monitoring in bovine liver during RF ablation therapy using autocorrelation

Author(s):  
H.K. Chiang ◽  
Chao-Kang Liao ◽  
Yi-Hong Chou ◽  
Ton-Tai Pan ◽  
Shin-Chang Pan
1960 ◽  
Vol XXXIV (I) ◽  
pp. 27-32 ◽  
Author(s):  
Stian Erichsen ◽  
Weiert Velle

ABSTRACT The metabolism of some oestrogenic hormones was studied in vitro by the use of cells grown on a medium free from blood. The methods used for the culture of cells from bovine testis, endometrium, amnion, and liver in confluent cell sheets on glass are described. The interconversion of oestrone and oestradiol-17β was demonstrated in the presence of cells from amnion, endometrium, and also from testicles of young calves and bulls. Only trace amounts of oestrone were found following incubations with oestradiol-17α in these tissues. Bovine liver cells grown in vitro showed a very poor capacity to bring about the interconversion mentioned above.


2005 ◽  
Vol 45 (4) ◽  
pp. 441-451 ◽  
Author(s):  
Anne De La Torre ◽  
Dominique Gruffat ◽  
Jean-Michel Chardigny ◽  
Jean-Louis Sebedio ◽  
Denys Durand ◽  
...  

2014 ◽  
Vol 28 (10) ◽  
pp. 1629-1639 ◽  
Author(s):  
Yingqiu Xie ◽  
Wenfu Lu ◽  
Shenji Liu ◽  
Qing Yang ◽  
Brett S. Carver ◽  
...  

Castration-resistant prostate cancer (PCa) (CRPC) is relapse after various forms of androgen ablation therapy and causes a major mortality in PCa patients, yet the mechanism remains poorly understood. Here, we report the nuclear form of mesenchymal epithelial transition factor (nMET) is essential for CRPC. Specifically, nMET is remarkably increased in human CRPC samples compared with naïve samples. Androgen deprivation induces endogenous nMET and promotes cell proliferation and stem-like cell self-renewal in androgen-nonresponsive PCa cells. Mechanistically, nMET activates SRY (sex determining region Y)-box9, β-catenin, and Nanog homeobox and promotes sphere formation in the absence of androgen stimulus. Combined treatment of MET and β-catenin enhances the inhibition of PCa cell growth. Importantly, MET accumulation is detected in nucleus of recurrent prostate tumors of castrated Pten/Trp53 null mice, whereas MET elevation is predominantly found in membrane of naïve tumors. Our findings reveal for the first time an essential role of nMET association with SOX9/β-catenin in CRPC in vitro and in vivo, highlighting that nuclear RTK activate cell reprogramming to drive recurrence, and targeting nMET would be a new avenue to treat recurrent cancers.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Michael G Paulus ◽  
Kathrin Renner ◽  
Steffen Pabel ◽  
Gabriela Pietrzyk ◽  
Andreas Luchner ◽  
...  

Introduction: Clinical significance of tachycardiomyopathy (TCM) increased with trials on catheter ablation therapy. Myocardial biopsies from patients show disturbed mitochondrial architecture. Hypothesis: TCM involves mitochondrial dysfunction. Methods: First, TCM was investigated in an animal model: pacemaker implantation in 7 rabbits was followed by tachypacing for 30 days (TCM), 7 animals served as sham-operated controls (SHAM). Second, results of the animal study were evaluated for their translational perspective for human disease using a novel model of induced pluripotent stem cell-derived cardiomyocytes (iPS-CM), derived from 4 healthy donors. IPS-CM were paced with 120 bpm (TACH) or 60 bpm (CTRL) for 7 days in vitro. Targeted transcriptomics, high-resolution respirometry and flow cytometry (MitoSOX Red) were performed. To account for variations between cell differentiations, experiments on iPS-CM were carried out in a paired design. Results: TCM showed LV dilatation and dysfunction (ΔLVEDD +5.3±0.2mm; ΔFS -19±8%; TCM-SHAM; p<0.001). Histological findings resembled human disease entailing cardiomyocyte hypertrophy (CSA 519±32μm 2 vs. 413±21μm 2 , p<0.01) without fibrosis (hydroxyproline content, p=0.52). Mitochondrial transcriptome of TCM was characterized by downregulation of 10 antioxidative enzymes (e.g. GPX3, fold change (FC) 0.4; TCM/SHAM; p<0.05) as well as mitochondrial carriers, including ADP/ATP- and NADH-shuttling (SLC25A4, FC 0.7; SLC25A12, FC 0.8; p<0.01). As transcriptomics implied impaired substrate import, respirometry was performed in whole tissue. In support of our findings on the transcriptome level, mitochondrial oxidative phosphorylation capacity decreased in TCM (133±13 vs. 170±16 pmol·O 2 ·s -1 ·mg -1 ·tissue, p<0.05). Similarly, oxidative phosphorylation was reduced in iPS-CM (995±738 vs. 1838±901 pmolO 2 ·s -1 ·IU -1 citrate synthase activity, TACH vs. CTRL, p<0.01). Concurrently, tachypacing increased mitochondrial superoxide emission in iPS-CM (MFI 491±206 vs. 301±119, p<0.05). Conclusions: Persistent tachycardia alters two mitochondrial key functions in an animal and a novel human ex vivo model: oxidative phosphorylation capacity is reduced, while superoxide emission increases.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
K Garrott ◽  
A Sugrue ◽  
J Laughner ◽  
J Bush ◽  
S Gutbrod ◽  
...  

Abstract Catheter-tissue coupling is crucial for effective delivery of radiofrequency (RF) energy during catheter ablation. Force sensing catheters provide a metric of mechanical tissue contact and catheter stability, while local impedance has been shown to provide sensitive information on real-time tissue heating. The complementary use of force and local impedance during RF ablation procedures could provide an advantage over the use of one metric alone. This study evaluates a prototype ablation catheter that measures both contact force (CF) using inductive sensors and local catheter impedance (LI) using only catheter electrodes. The complementary nature was assessed with discrete lesions in vitro and an intercaval line in vivo. A force-sensing catheter with LI was evaluated in explanted swine hearts (n=14) in an in vivo swine model (n=9, 50–70kg) using investigational electroanatomical mapping software. In vitro, discrete lesions were created in ventricular tissue at a range of forces (0–40g) controlled externally. RF energy was applied at a range of powers (20W, 30W, and 40W), durations (10s-60s), and catheter orientations (0°, 45°, and 90°). Lesions were stained with TTC and measured. LI drop relative to baseline during RF in the bench studies was used to inform the in vivo study. In a separate subset of animals in vivo, an intercaval line was created in three experimental groups: LI blinded, 20Ω ΔLI, and 30Ω ΔLI. CF was maintained between 15 and 25g in all groups. All ablations were performed with a power of 30W. In the LI blinded group, all lesions were delivered for 30s. In the 20Ω ΔLI group, the investigator ablated until a 20Ω drop or 30 seconds was achieved. Likewise, in the 30Ω ΔLI, the investigator ablated until a 30Ω drop or 30 seconds was achieved. In vitro, 137 discrete ventricular lesions were created. LI drop during ablation correlated strongly with lesion depth using a monoexponential fit (R=0.84) while force time integral (FTI) did not correlate as strongly (R=0.56). In the intercaval LI blinded group, starting LI ranged from 126–163Ω with a median of 138Ω. LI drops ranged from 13Ω-44Ω, with a median of 26Ω. In the 20Ω ΔLI group, starting LI ranged from 137–211Ω with a median of 161Ω and LI drop ranged from 7Ω-35Ω, with a median of 22Ω. In the 30Ω ΔLI group, starting LI ranged from 130–256Ω with a median of 171Ω and LI drop ranged from 20Ω-52Ω, with a median of 31Ω. Notably, RF time for the LI blinded group was 13±0.1 minutes while RF time in the 20Ω ΔLI group was 6.4±1.9 minutes and 7.5±0.7 minutes in the 30Ω ΔLI group. A catheter incorporating CF-sensing and LI capabilities provides a powerful tool for RF ablation. Bench studies demonstrate a strong correlation between LI drop and lesion dimensions, which guided the use of LI in vivo. In vivo, the confirmation of stable mechanical contact and viewing of real-time LI drops enabled a significant reduction in RF time while creating a continuous intercaval line. Acknowledgement/Funding This study was funded by Boston Scientific.


1992 ◽  
Vol 118 (5) ◽  
pp. 1015-1026 ◽  
Author(s):  
M G Waters ◽  
D O Clary ◽  
J E Rothman

We have used an in vitro Golgi protein transport assay dependent on high molecular weight (greater than 100 kD) cytosolic and/or peripheral membrane proteins to study the requirements for transport from the cis- to the medial-compartment. Fractionation of this system indicates that, besides the NEM-sensitive fusion protein (NSF) and the soluble NSF attachment protein (SNAP), at least three high molecular weight protein fractions from bovine liver cytosol are required. The activity from one of these fractions was purified using an assay that included the second and third fractions in a crude state. The result is a protein of 115-kD subunit molecular mass, which we term p115. Immunodepletion of the 115-kD protein from a purified preparation with mAbs removes activity. Peptide sequence analysis of tryptic peptides indicates that p115 is a "novel" protein that has not been described previously. Gel filtration and sedimentation analysis indicate that, in its native state, p115 is a nonglobular homo-oligomer. p115 is present on purified Golgi membranes and can be extracted with high salt concentration or alkaline pH, indicating that it is peripherally associated with the membrane. Indirect immunofluorescence indicates that p115 is associated with the Golgi apparatus in situ.


Sign in / Sign up

Export Citation Format

Share Document