scholarly journals The effect of cycling on the state of health of the electric vehicle battery

Author(s):  
Gillian Lacey ◽  
Tianxiang Jiang ◽  
Ghanim Putrus ◽  
Richard Kotter
Author(s):  
Sohel Anwar

Abstract An electrochemical model based capacity fade estimation method for a Li-Ion battery is investigated in this paper. An empirical capacity fade model for estimating the state of health of a LiFePO4 electric vehicle battery was integrated with electrochemical battery model in Matlab/Simulink platform. This combined model was then validated against experimental data reported in the literature for constant current charge / discharge cycling. An HPPC current profile was then applied to the validated electrochemical-empirical battery prognosis model which reflected a real-time operating condition for charge and discharge current fluctuations in an electric vehicle battery. The combined model was simulated under the two different HPPC current inputs for three different cycle times. Additionally temperature was taken in account in estimating the cycle aging under the applied current profile to assess the present capacity remaining in the battery. The simulation results provided the state of health (SOH) of the battery for these cycling times which were comparable to the published experimental SOH values for constant current charge/discharge profiles. Thus this model can potentially be used to predict the capacity fade status of an electric vehicle battery.


2019 ◽  
Vol 10 (4) ◽  
pp. 63 ◽  
Author(s):  
Casals ◽  
Rodríguez ◽  
Corchero ◽  
Carrillo

As a result of monitoring thousands of electric vehicle charges around Europe, this study builds statistical distributions that model the amount of energy necessary for trips between charges, showing that most of trips are within the range of electric vehicle even when the battery degradation reaches the end-of-life, commonly accepted to be 80% State of Health. According to these results, this study analyses how far this End-of-Life can be pushed forward using statistical methods and indicating the provability of failing to fulfill the electric vehicle (EV) owners’ daily trip needs.


Author(s):  
Mingyue Zhang ◽  
Xiaobin Fan ◽  
Jing Gan ◽  
Zeng Song ◽  
Bin Zhao

Background: Battery technology has been one of the bottlenecks in electric cars. Whether it is in theory or in practice, the research on battery management is extremely important, especially for battery state-of-charge estimation. In fact, the battery has a strong time change and non-linear properties, which are extremely complex systems. Therefore, accurate estimating the state of charge is a challenging thing. Objective: The study aims to report the latest progress in the studies of the state-of-charge estimation methods for electric vehicle battery. Methods: This paper reviews various representative patents and papers related to the state of charge estimation methods for electric vehicle battery. According to their theoretical and experimental characteristics, the estimation methods were classified into three groups: the traditional estimation algorithm based on the battery experiment, the estimation algorithm based on modern control theory and other estimation algorithm based on the innovative ideas, especially focusing on the algorithms based on control theory. Results: The advantages and disadvantages, current and future developments of the state-of-charge estimation methods are finally provided and discussed. Conclusion: Each kind of state of charge estimation method has its own characteristics, suitable for different occasions. At present, algorithms based on control theory, especially intelligent algorithms, are the focus of research in this field. The future development direction is to establish rich database, improve hardware technology, put up with more perfect battery model, and give full play to the advantages of each algorithm.


Author(s):  
Alireza Rastegarpanah ◽  
Jamie Hathaway ◽  
Mohamed Ahmeid ◽  
Simon Lambert ◽  
Allan Walton ◽  
...  

There is growing interest in recycling and re-use of electric vehicle batteries owing to their growing market share and use of high-value materials such as cobalt and nickel. To inform the subsequent applications at battery end of life, it is necessary to quantify their state of health. This study proposes an estimation scheme for the state of health of high-power lithium-ion batteries based on extraction of parameters from impedance data of 13 Nissan Leaf 2011 battery modules modelled by a modified Randles equivalent circuit model. Using the extracted parameters as predictors for the state of health, a baseline single hidden layer neural network was evaluated by root mean square and peak state of health prediction errors and refined using a Gaussian process optimisation procedure. The optimised neural network predicted state of health with a root mean square error of (1.729 ± 0.147)%, which is shown to be competitive with some of the most performant existing neural network–based state of health estimation schemes, and is expected to outperform the baseline model with ∼50 training samples. The use of equivalent circuit model parameters enables more in-depth analysis of the battery degradation state than many similar neural network–based schemes while maintaining similar accuracy despite a reduced dataset, while there is demonstrated potential for measurement times to be reduced to as little as 30 s with frequency targeting of the impedance measurements.


Author(s):  
Claudia P. Arenas Guerrero ◽  
Feng Ju ◽  
Jingshan Li ◽  
Guoxian Xiao ◽  
Stephan Biller

Sign in / Sign up

Export Citation Format

Share Document