Rolling bearing fault diagnosis based on variational mode decomposition and permutation entropy

Author(s):  
Guiji Tang ◽  
Xiaolong Wang ◽  
Yuling He ◽  
Shangkun Liu
2016 ◽  
Vol 39 (7) ◽  
pp. 1000-1006 ◽  
Author(s):  
Xueli An ◽  
Yongjun Tang

For the unsteady characteristics of a fault vibration signal of a wind turbine’s rolling bearing, a bearing fault diagnosis method based on variational mode decomposition of the energy distribution is proposed. Firstly, variational mode decomposition is used to decompose the original vibration signal into a finite number of stationary components. Then, some components which comprise the major fault information are selected for further analysis. When a rolling bearing fault occurs, the energy in different frequency bands of the vibration acceleration signals will change. Energy characteristic parameters can then be extracted from each component as the input parameters of the classifier, based on the K nearest neighbour algorithm. This can identify the type of fault in the rolling bearing. The vibration signals from a spherical roller bearing in its normal state, with an outer race fault, with an inner race fault and with a roller fault were analyzed. The results showed that the proposed method (variational mode decomposition is used as a pre-processor to extract the energy of each frequency band as the characteristic parameter) can identify the working state and fault type of rolling bearings in a wind turbine.


Author(s):  
Xueli An ◽  
Luoping Pan

Variational mode decomposition is a new signal decomposition method, which can process non-linear and non-stationary signals. It can overcome the problems of mode mixing and compensate for the shortcomings in empirical mode decomposition. Permutation entropy is a method which can detect the randomness and kinetic mutation behavior of a time series. It can be considered for use in fault diagnosis. The complexity of wind power generation systems means that the randomness and kinetic mutation behavior of their vibration signals are displayed at different scales. Multi-scale permutation entropy analysis is therefore needed for such vibration signals. This research investigated a method based on variational mode decomposition and permutation entropy for the fault diagnosis of a wind turbine roller bearing. Variational mode decomposition was adopted to decompose the bearing vibration signal into its constituent components. The components containing key fault information were selected for the extraction of their permutation entropy. This entropy was used as a bearing fault characteristic value. The nearest neighbor algorithm was employed as a classifier to identify faults in a roller bearing. The experimental data showed that the proposed method can be applied to wind turbine roller bearing fault diagnosis.


Author(s):  
Ying Zhang ◽  
Hongfu Zuo ◽  
Fang Bai

There are mainly two problems with the current feature extraction methods used in the electrostatic monitoring of rolling bearings, which affect their abilities to identify early faults: (1) since noises are mixed in the electrostatic signals, it is difficult to extract weak early fault features; (2) traditional time and frequency domain features have limited ability to provide a quantitative indicator of degradation state. With regard to these two problems, a new feature extraction method for rolling bearing fault diagnosis by electrostatic monitoring sensors is proposed in this paper. First, the spectrum interpolation is adopted to suppress the power-frequency interference in the electrostatic signal. Then the resultant signal is used to construct Hankel matrix, the number of useful components is automatically selected based on the difference spectrum of singular values, after that the signal is reconstructed to remove background noises and random pulses. Finally, the permutation entropy of the denoised signal is calculated and smoothed using the exponential weighted moving average method, which is used to be a quantitative indicator of bearing performance state. The simulation and experimental results show that the proposed method can effectively remove noises and significantly bring forward the time when early faults are detected.


Sign in / Sign up

Export Citation Format

Share Document