Transfer Learning and Deep Feature Extraction for Planktonic Image Data Sets

Author(s):  
Eric C. Orenstein ◽  
Oscar Beijbom
2021 ◽  
pp. 1063293X2198894
Author(s):  
Prabira Kumar Sethy ◽  
Santi Kumari Behera ◽  
Nithiyakanthan Kannan ◽  
Sridevi Narayanan ◽  
Chanki Pandey

Paddy is an essential nutrient worldwide. Rice gives 21% of worldwide human per capita energy and 15% of per capita protein. Asia represented 60% of the worldwide populace, about 92% of the world’s rice creation, and 90% of worldwide rice utilization. With the increase in population, the demand for rice is increased. So, the productivity of farming is needed to be enhanced by introducing new technology. Deep learning and IoT are hot topics for research in various fields. This paper suggested a setup comprising deep learning and IoT for monitoring of paddy field remotely. The vgg16 pre-trained network is considered for the identification of paddy leaf diseases and nitrogen status estimation. Here, two strategies are carried out to identify images: transfer learning and deep feature extraction. The deep feature extraction approach is combined with a support vector machine (SVM) to classify images. The transfer learning approach of vgg16 for identifying four types of leaf diseases and prediction of nitrogen status results in 79.86% and 84.88% accuracy. Again, the deep features of Vgg16 and SVM results for identifying four types of leaf diseases and prediction of nitrogen status have achieved an accuracy of 97.31% and 99.02%, respectively. Besides, a framework is suggested for monitoring of paddy field remotely based on IoT and deep learning. The suggested prototype’s superiority is that it controls temperature and humidity like the state-of-the-art and can monitor the additional two aspects, such as detecting nitrogen status and diseases.


Author(s):  
Prabira Kumar Sethy ◽  
Chanki Pandey ◽  
Santi Kumari Behera

In this article, we analyse the computer aid screening method of COVID19 using Xray and CT scan images. The main objective is to set an analytical closure about the computer aid screening of COVID19 among the X-ray image and CT scan image. The computer aid screening method includes deep feature extraction, transfer learning and traditional machine learning image classification approach. The deep feature extraction and transfer learning method considered 13 pre-trained CNN model. The machine learning approach includes three sets of features and three classifiers. The pre-trained CNN models are alexnet, googlenet, vgg16, vgg19, densenet201, resnet18, resnet50, resnet101, inceptionv3, inceptionresnetv2, xception, mobilenetv2 and shufflenet. The features and classifiers in machine learning approaches are GLCM, LBP, HOG and KNN, SVM, Naive bay’s respectively. In addition, we also analyse the different paradigms of classifiers. In total, the comparative analysis is carried out in 65 classification models, i.e. 13 in deep feature extraction, 13 in transfer learning and 39 in machine learning approaches. Finally, all the classification models perform better in X-ray image set compare to CT scan image set.


2021 ◽  
pp. 1-14
Author(s):  
Prabira Kumar Sethy ◽  
Santi Kumari Behera ◽  
Komma Anitha ◽  
Chanki Pandey ◽  
M.R. Khan

The objective of this study is to conduct a critical analysis to investigate and compare a group of computer aid screening methods of COVID-19 using chest X-ray images and computed tomography (CT) images. The computer aid screening method includes deep feature extraction, transfer learning, and machine learning image classification approach. The deep feature extraction and transfer learning method considered 13 pre-trained CNN models. The machine learning approach includes three sets of handcrafted features and three classifiers. The pre-trained CNN models include AlexNet, GoogleNet, VGG16, VGG19, Densenet201, Resnet18, Resnet50, Resnet101, Inceptionv3, Inceptionresnetv2, Xception, MobileNetv2 and ShuffleNet. The handcrafted features are GLCM, LBP & HOG, and machine learning based classifiers are KNN, SVM & Naive Bayes. In addition, the different paradigms of classifiers are also analyzed. Overall, the comparative analysis is carried out in 65 classification models, i.e., 13 in deep feature extraction, 13 in transfer learning, and 39 in the machine learning approaches. Finally, all classification models perform better when applying to the chest X-ray image set as comparing to the use of CT scan image set. Among 65 classification models, the VGG19 with SVM achieved the highest accuracy of 99.81%when applying to the chest X-ray images. In conclusion, the findings of this analysis study are beneficial for the researchers who are working towards designing computer aid tools for screening COVID-19 infection diseases.


Author(s):  
Erik Carlbaum ◽  
Sina Sharif Mansouri ◽  
Christoforos Kanellakis ◽  
Anton Koval ◽  
George Nikolakopoulos

2020 ◽  
Author(s):  
Ying Bi ◽  
Bing Xue ◽  
Mengjie Zhang

© Springer International Publishing AG, part of Springer Nature 2018. Feature extraction is an essential process for image data dimensionality reduction and classification. However, feature extraction is very difficult and often requires human intervention. Genetic Programming (GP) can achieve automatic feature extraction and image classification but the majority of existing methods extract low-level features from raw images without any image-related operations. Furthermore, the work on the combination of image-related operators/descriptors in GP for feature extraction and image classification is limited. This paper proposes a multi-layer GP approach (MLGP) to performing automatic high-level feature extraction and classification. A new program structure, a new function set including a number of image operators/descriptors and two region detectors, and a new terminal set are designed in this approach. The performance of the proposed method is examined on six different data sets of varying difficulty and compared with five GP based methods and 42 traditional image classification methods. Experimental results show that the proposed method achieves better or comparable performance than these baseline methods. Further analysis on the example programs evolved by the proposed MLGP method reveals the good interpretability of MLGP and gives insight into how this method can effectively extract high-level features for image classification.


Sign in / Sign up

Export Citation Format

Share Document