Fast camera calibration technology applied to helicopter blades pyramid angle measurement

Author(s):  
Chengtao Cai ◽  
Mai Jiang ◽  
Fan Zhang ◽  
Huayun Lin
2020 ◽  
Vol 2020 (5) ◽  
pp. 60401-1-60401-8
Author(s):  
Shuhei Watanabe

The quantification of material appearance is important in product design. In particular, the sparkle impression of metallic paint used mainly for automobiles varies with the observation angle. Although several evaluation methods and multi-angle measurement devices have been proposed for the impression, it is necessary to add more light sources or cameras to the devices to increase the number of evaluation angles. The present study constructed a device that evaluates the multi-angle sparkle impression in one shot and developed a method for quantifying the impression. The device comprises a line spectral camera, light source, and motorized rotation stage. The quantification method is based on spatial frequency characteristics. It was confirmed that the evaluation value obtained from the image recorded by the constructed device correlates closely with a subjective score. Furthermore, the evaluation value is significantly correlated with that obtained using a commercially available evaluation device.


2019 ◽  
Vol 2019 (9) ◽  
pp. 374-1-374-6
Author(s):  
Yen-Chou Tai ◽  
Yu-Hsiang Chiu ◽  
Yi-Yu Hsieh ◽  
Yong-Sheng Chen ◽  
Jen-Hui Chuang

2004 ◽  
Vol 95 (1) ◽  
pp. 3-7 ◽  
Author(s):  
P. Chhillar ◽  
S. Sangal ◽  
A. Upadhyaya

2020 ◽  
pp. 3-14
Author(s):  
O. M. Samoylenko ◽  
O. V. Adamenko ◽  
B. P. Kukareka

Reference method for simultaneous calibration of the three and more measurement standards for vertical angle measurement is developed. This method can to use for obtaining the systematic biases of the vertical angles measurements for each of the measuring standards relative of the horizontal plain was averaged from measurement results in time their calibration or comparison. For realization of the reference method was developed the autocollimationel electronic measurement standard for the automatization measurement of the vertical angles SeaLineZero_Standard™ (SLZ_S™). Summary standard deviation (k=1) of the vertical angle measurement relative the horizontal plane, from the results of their calibration by reference method, is not more 0,07ʺ…0,15ʺ. This result was obtained without the use the systematic biases, for each measurement standards, as measurements corrections (with opposite sign). The measuring standards, that were developed and researched, are necessary for obtaining the systematic biases of the vertical angle measurement for total stations and theodolites, that have the normed standard error 0,5ʺ and 1ʺ, when these instruments are calibrating.


Sign in / Sign up

Export Citation Format

Share Document