scholarly journals A Study on Development of Angle Measurement Camera for Construction of Undergroud Pipes and its Camera Calibration for Angle Measurement Accuracy

2011 ◽  
Vol 50 (1) ◽  
pp. 40-45
Author(s):  
Hajime HONDA ◽  
Shunji MURAI
2016 ◽  
Vol 29 (4) ◽  
pp. 465-473 ◽  
Author(s):  
Na Jin Seo ◽  
Mojtaba F. Fathi ◽  
Pilwon Hur ◽  
Vincent Crocher

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Yuta Teruyama ◽  
Takashi Watanabe

The wearable sensor system developed by our group, which measured lower limb angles using Kalman-filtering-based method, was suggested to be useful in evaluation of gait function for rehabilitation support. However, it was expected to reduce variations of measurement errors. In this paper, a variable-Kalman-gain method based on angle error that was calculated from acceleration signals was proposed to improve measurement accuracy. The proposed method was tested comparing to fixed-gain Kalman filter and a variable-Kalman-gain method that was based on acceleration magnitude used in previous studies. First, in angle measurement in treadmill walking, the proposed method measured lower limb angles with the highest measurement accuracy and improved significantly foot inclination angle measurement, while it improved slightly shank and thigh inclination angles. The variable-gain method based on acceleration magnitude was not effective for our Kalman filter system. Then, in angle measurement of a rigid body model, it was shown that the proposed method had measurement accuracy similar to or higher than results seen in other studies that used markers of camera-based motion measurement system fixing on a rigid plate together with a sensor or on the sensor directly. The proposed method was found to be effective in angle measurement with inertial sensors.


2012 ◽  
Vol 3 (6) ◽  
pp. 15-18 ◽  
Author(s):  
Artūras Prielaidas ◽  
Rimas Lazdinas

Rotary encoders are the main devices in industrial angle measurement. Accuracy is very important and is assured by the technology of manufacture. The main part (rotary disk) is under examination, and therefore a number of its characteristics are established and a comparison with the assembled encoder is presented. In conclusion, an error in the angle of the rotary disk makes a possibility of forecasting an error in the assembled encoder angle. Santrauka Nagrinėjamas limbų paklaidų matavimas, jų vertinimas, fotoelektrinių matavimų keitiklių paklaidų matavimas, bandoma nustatyti keitiklio paklaidų priklausomybę nuo limbo paklaidų. Pateikta limbų, keitiklių apžvalga, analizė, pagrindinės schemos. Atlikta limbų ir keitiklių paklaidų aproksimacija parametrinėmis funkcijomis. Apibendrinti visų matavimų rezultatai – kas būdinga paklaidų kreivėms, kokie dydžiai, jų aproksimacijos parametrinėmis funkcijomis rezultatai, formulės, analizė. Atlikti koreliacijos tarp limbo ir matavimo keitiklio paklaidų tyrimai.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4348 ◽  
Author(s):  
Wei Liu ◽  
Xin Ma ◽  
Xiao Li ◽  
Yi Pan ◽  
Fuji Wang ◽  
...  

Nowadays, due to the advantages of non-contact and high-speed, vision-based pose measurements have been widely used for aircraft performance testing in a wind tunnel. However, usually glass ports are used to protect cameras against the high-speed airflow influence, which will lead to a big measurement error. In this paper, to further improve the vision-based pose measurement accuracy, an imaging model which considers the refraction light of the observation window was proposed. In this method, a nonlinear camera calibration model considering the refraction brought by the wind tunnel observation window, was established first. What’s more, a new method for the linear calibration of the normal vector of the glass observation window was presented. Then, combining with the proposed matching method based on coplanarity constraint, the six pose parameters of the falling target could be calculated. Finally, the experimental setup was established to conduct the pose measurement study in the laboratory, and the results satisfied the application requirements. Besides, experiments for verifying the vision measurement accuracy were also performed, and the results indicated that the displacement and angle measurement accuracy approximately increased by 57% and 33.6%, respectively, which showed the high accuracy of the proposed method.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
N. Awarkeh ◽  
J.-C. Cousin ◽  
M. Muller ◽  
N. Samama

This paper shows that the accuracy of azimuth angle measurement for an interferometric localization system used to locate tags in its Line-of-Sight (LoS) can be improved by exploiting Impulse Radio-Ultra WideBand (IR-UWB) signals and without increasing the frequency bandwidth. This solution uses a Phase Correlation (PC) method, initially applied for Continuous Wave (CW) signals, adapted for Ultra WideBand (UWB) pulse signals. The obtained results are compared to those computed by a classical Energy Detection (ED) method where it becomes impossible to estimate azimuth angles for tag positions close to the orthogonal centered axis of the localization system baseline.


2015 ◽  
Vol 220-221 ◽  
pp. 391-395
Author(s):  
Lauryna Šiaudinytė ◽  
Deividas Sabaitis ◽  
Mindaugas Rybokas ◽  
Domantas Bručas

This paper deals with the presentation of the new centering – leveling device developed in Vilnius Gediminas Technical University. Precision angle measuring systems are always combined of many mechanisms and devices which influence angle measurement accuracy. Therefore, every one of them has to be investigated separately. This device can be used as a separate device to perform a slight movement of measured object or it can be used as a part of mechatronic angle measuring system. This paper presents preliminary results of centering – leveling device minimum pitch determination and analysis of further development of this device as a part of mechatronic angle measuring system.


2021 ◽  
Vol 11 (21) ◽  
pp. 10300
Author(s):  
Renhao Ge ◽  
Dahai Li ◽  
Xinwei Zhang ◽  
Ruiyang Wang ◽  
Wanxing Zheng ◽  
...  

Phase measuring deflectometry (PMD) is a competitive method for specular surface measurement that offers the advantages of a high dynamic range, non-contact process, and full field measurement; furthermore, it can also achieve high accuracy. Camera calibration is a crucial step for PMD. As a result, a method based on the calibration of the entrance pupil center is introduced in this paper. Then, our proposed approach is compared with the most popular photogrammetric method based on Zhang’s technique (PM) and Huang’s modal phase measuring deflectometry (MPMD). The calibration procedures of these three methods are described, and the measurement errors introduced by the perturbations of degrees of freedom in the PMD system are analyzed using a ray tracing technique. In the experiment, a planar window glass and an optical planar element are separately measured, and the measurement results of the use of the three methods are compared. The experimental results for the optical planar element (removing the first 6 terms of the Zernike polynomial) show that our method’s measurement accuracy reached 13.71 nm RMS and 80.50 nm PV, which is comparable to accuracy values for the interferometer.


Sign in / Sign up

Export Citation Format

Share Document