High performance motion controller design for linear piezoelectric ceramic motors

Author(s):  
Chi-Ying Lin ◽  
Xi-Yin Lin
2013 ◽  
Vol 33 (12) ◽  
pp. 3604-3607
Author(s):  
Shiyao LIN ◽  
Chongyang WU ◽  
Ruifeng LI

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Xingjian Wang ◽  
Siru Lin ◽  
Shaoping Wang

Attainment of high-performance motion/velocity control objectives for the Direct-Drive Rotary (DDR) torque motor should fully consider practical nonlinearities in controller design, such as dynamic friction. The LuGre model has been widely utilized to describe nonlinear friction behavior; however, parameter identification for the LuGre model remains a challenge. A new dynamic friction parameter identification method for LuGre model is proposed in this study. Static parameters are identified through a series of constant velocity experiments, while dynamic parameters are obtained through a presliding process. Novel evolutionary algorithm (NEA) is utilized to increase identification accuracy. Experimental results gathered from the identification experiments conducted in the study for a practical DDR torque motor control system validate the effectiveness of the proposed method.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
M. Santhakumar ◽  
T. Asokan ◽  
T. R. Sreeram

Hydrodynamic parameters play a major role in the dynamics and control of Autonomous Underwater Vehicles (AUVs). The performance of an AUV is dependent on the parameter variations and a proper understanding of these parametric influences is essential for the design, modeling, and control of high-performance AUVs. In this paper, the sensitivity of hydrodynamic parameters on the control of a flatfish type AUV is analyzed using robust design techniques such as Taguchi's design method and statistical analysis tools such as Pareto-ANOVA. Since the pitch angle of an AUV is one of the crucial variables in the control applications, the sensitivity analysis of pitch angle variation is studied here. Eight prominent hydrodynamic coefficients are considered in the analysis. The results show that there are two critical hydrodynamic parameters, that is, hydrodynamic force and hydrodynamic pitching moment in the heave direction that influence the performance of a flatfish type AUV. A near-optimal combination of the parameters was identified and the simulation results have shown the effectiveness of the method in reducing the pitch error. These findings are significant for the design modifications as well as controller design of AUVs.


Sign in / Sign up

Export Citation Format

Share Document