scholarly journals Analysis of Parameter Sensitivity Using Robust Design Techniques for a Flatfish Type Autonomous Underwater Vehicle

2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
M. Santhakumar ◽  
T. Asokan ◽  
T. R. Sreeram

Hydrodynamic parameters play a major role in the dynamics and control of Autonomous Underwater Vehicles (AUVs). The performance of an AUV is dependent on the parameter variations and a proper understanding of these parametric influences is essential for the design, modeling, and control of high-performance AUVs. In this paper, the sensitivity of hydrodynamic parameters on the control of a flatfish type AUV is analyzed using robust design techniques such as Taguchi's design method and statistical analysis tools such as Pareto-ANOVA. Since the pitch angle of an AUV is one of the crucial variables in the control applications, the sensitivity analysis of pitch angle variation is studied here. Eight prominent hydrodynamic coefficients are considered in the analysis. The results show that there are two critical hydrodynamic parameters, that is, hydrodynamic force and hydrodynamic pitching moment in the heave direction that influence the performance of a flatfish type AUV. A near-optimal combination of the parameters was identified and the simulation results have shown the effectiveness of the method in reducing the pitch error. These findings are significant for the design modifications as well as controller design of AUVs.

2020 ◽  
Vol 8 (6) ◽  
pp. 407
Author(s):  
Feiyan Min ◽  
Guoliang Pan ◽  
Xuefeng Xu

The hydrodynamic characteristics of multi-propeller autonomous underwater vehicles (AUV) is usually complicated and it is difficult to obtain an accurate mathematical model. A modeling method based on CFD calculation and maximum likelihood identification algorithm is proposed for this problem. Firstly, rough hydrodynamic parameters of AUV hull are obtained by CFD calculation. Secondly, on the basis of rough parameters, a maximum likelihood identification algorithm is proposed to adjust the parameters and improve the model precision. Besides, the method to improve the convergence of identification algorithm is analyzed by considering the characteristics of AUV model structure. Finally, the identification algorithm and identification results were validated with experimental data. It was found that this method has good convergence and adaptability. In particular, the identification results of turning force and torque parameters are highly consistent in different identification experiments, which indicates that this method can well extract the maneuvering characteristics of AUVs, thus contributing to the controller design of AUVs. The research of this paper has potential application for the modeling and control of multi-propeller AUVs.


2021 ◽  
pp. 107754632110300
Author(s):  
Mohammad Hedayati Khodayari ◽  
Naser Pariz ◽  
Saeed Balochian

This article investigates an enhanced optimal robust time-delay stabilizer for an autonomous underwater vehicle in the descriptor model. Time-delay, model uncertainty, and actuator saturation constraint are some practical challenges in autonomous underwater vehicle controller design. In this regard, an appropriate autonomous underwater vehicle descriptor model is obtained, and sufficient stabilization conditions are determined in the terms of linear matrix inequality. The obtained criterion guarantees the system to be regular, impulse-free, and stable. Meanwhile, the delay-dependent and rate-dependent conditions are taken into account. Furthermore, uncertainty and time-delay are time-variant. This method includes a tuning factor for practical design aspects and tradeoff among desired requirements. Also, as an essential general requirement in non-linear systems, the maximal estimate of the attraction domain is proposed as an optimization problem. Numerical examples and simulations illustrate that the proposed methods are effective and useful in less conservative results. The technique can be generalized and applied to the most conventional autonomous underwater vehicles.


Robotica ◽  
2014 ◽  
Vol 33 (08) ◽  
pp. 1731-1750 ◽  
Author(s):  
Francisco J. Ortiz ◽  
Carlos C. Insaurralde ◽  
Diego Alonso ◽  
Francisco Sánchez ◽  
Yvan R. Petillot

SUMMARYSoftware engineering plays a key role in state-of-the-art robotics where more effective and efficient software development solutions are needed for implementation and integration of advanced robotics capabilities. Component-based software engineering and model-driven software development are two paradigms suitable to deal with such challenges. This paper presents the analysis, design, and implementation of control software for an Autonomous Underwater Vehicle (AUV). The software development stages are carried out by using a model-driven toolchain that provides support to design and build component-based software for robotics applications. A case study of a high-performance AUV control application and experimental results from a software schedulability analysis are presented.


2005 ◽  
Vol 2 (2) ◽  
pp. 117-123
Author(s):  
S. N. Singh ◽  
S. Mani

The paper treats the question of control of a laterally and rotationally oscillating hydrofoil for the propulsion of biologically inspired robotic (biorobotic) autonomous underwater vehicles (BAUVs). Sinusoidal oscillations of foils produce maneuvering and propulsive forces. The design is based on the internal model principle. Two springs are used to transmit forces from the actuators to the foil. Oscillating fins produce periodic forces, which can be used for fish-like propulsion and control of autonomous underwater vehicles (AUVs). The equations of motion of the foil include hydrodynamic lift and moment based on linear, unsteady, aerodynamic theory. A control law is derived for the lateral and rotational sinusoidal oscillation of the foil. In the closed-loop system, the lateral displacement and the rotational angle of the foil asymptotically follow sinusoidal trajectories of distinct frequencies and amplitudes independently. Simulation results are presented to show the trajectory tracking performance of the foil for different freestream velocities and sinusoidal command trajectories.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 644
Author(s):  
Do-Yeong Kim ◽  
Boram Kim ◽  
Han-Seung Shin

The effect of cellulosic aerogel treatments used for adsorption of four polycyclic aromatic hydrocarbons (PAHs)—benzo[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene [BaP])—generated during the manufacture of sesame oil was evaluated. In this study, eulalia (Miscanthus sinensis var. purpurascens)-based cellulosic aerogel (adsorbent) was prepared and used high performance liquid chromatography with fluorescence detection for determination of PAHs in sesame oil. In addition, changes in the sesame oil quality parameters (acid value, peroxide value, color, and fatty acid composition) following cellulosic aerogel treatment were also evaluated. The four PAHs and their total levels decreased in sesame oil samples roasted under different conditions (p < 0.05) following treatment with cellulosic aerogel. In particular, highly carcinogenic BaP was not detected after treatment with cellulosic aerogel. Moreover, there were no noticeable quality changes in the quality parameters between treated and control samples. It was concluded that eulalia-based cellulosic aerogel proved suitable for the reduction of PAHs from sesame oil and can be used as an eco-friendly adsorbent.


2021 ◽  
Vol 9 (3) ◽  
pp. 277
Author(s):  
Isaac Segovia Ramírez ◽  
Pedro José Bernalte Sánchez ◽  
Mayorkinos Papaelias ◽  
Fausto Pedro García Márquez

Submarine inspections and surveys require underwater vehicles to operate in deep waters efficiently, safely and reliably. Autonomous Underwater Vehicles employing advanced navigation and control systems present several advantages. Robust control algorithms and novel improvements in positioning and navigation are needed to optimize underwater operations. This paper proposes a new general formulation of this problem together with a basic approach for the management of deep underwater operations. This approach considers the field of view and the operational requirements as a fundamental input in the development of the trajectory in the autonomous guidance system. The constraints and involved variables are also defined, providing more accurate modelling compared with traditional formulations of the positioning system. Different case studies are presented based on commercial underwater cameras/sonars, analysing the influence of the main variables in the measurement process to obtain optimal resolution results. The application of this approach in autonomous underwater operations ensures suitable data acquisition processes according to the payload installed onboard.


2021 ◽  
Vol 170 ◽  
pp. 112529
Author(s):  
N. Cruz ◽  
A.J.N. Batista ◽  
J.M. Cardoso ◽  
B.B. Carvalho ◽  
P.F. Carvalho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document