Directional Preserving Gradient Vector Field for Active Contour Models

Author(s):  
Shi Zhang ◽  
Ning Xi ◽  
Tingting Tang ◽  
Gang Wang ◽  
Xiaozhi Liu
2020 ◽  
Vol 10 (18) ◽  
pp. 6163 ◽  
Author(s):  
Joaquín Rodríguez ◽  
Gilberto Ochoa-Ruiz ◽  
Christian Mata

Medical support systems used to assist in the diagnosis of prostate lesions generally related to prostate segmentation is one of the majors focus of interest in recent literature. The main problem encountered in the diagnosis of a prostate study is the localization of a Regions of Interest (ROI) containing a tumor tissue. In this paper, a new GUI tool based on a semi-automatic prostate segmentation is presented. The main rationale behind this tool and the focus of this article is facilitate the time consuming segmentation process used for annotating images in the clinical practice, enabling the radiologists to use novel and easy to use semi-automatic segmentation techniques instead of manual segmentation. In this work, a detailed specification of the proposed segmentation algorithm using an Active Contour Models (ACM) aided with a Gradient Vector Flow (GVF) component is defined. The purpose is to help the manual segmentation process of the main ROIs of prostate gland zones. Finally, an experimental case of use and a discussion part of the results are presented.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 192
Author(s):  
Umer Sadiq Khan ◽  
Xingjun Zhang ◽  
Yuanqi Su

The active contour model is a comprehensive research technique used for salient object detection. Most active contour models of saliency detection are developed in the context of natural scenes, and their role with synthetic and medical images is not well investigated. Existing active contour models perform efficiently in many complexities but facing challenges on synthetic and medical images due to the limited time like, precise automatic fitted contour and expensive initialization computational cost. Our intention is detecting automatic boundary of the object without re-initialization which further in evolution drive to extract salient object. For this, we propose a simple novel derivative of a numerical solution scheme, using fast Fourier transformation (FFT) in active contour (Snake) differential equations that has two major enhancements, namely it completely avoids the approximation of expansive spatial derivatives finite differences, and the regularization scheme can be generally extended more. Second, FFT is significantly faster compared to the traditional solution in spatial domain. Finally, this model practiced Fourier-force function to fit curves naturally and extract salient objects from the background. Compared with the state-of-the-art methods, the proposed method achieves at least a 3% increase of accuracy on three diverse set of images. Moreover, it runs very fast, and the average running time of the proposed methods is about one twelfth of the baseline.


Author(s):  
Vamisdhar Entireddy ◽  
Babu K Rajesh ◽  
R Sampathkumar ◽  
Jyothirmai Gandeti ◽  
Syed Shameem ◽  
...  

2015 ◽  
Vol 27 (05) ◽  
pp. 1550047 ◽  
Author(s):  
Gaurav Sethi ◽  
B. S. Saini

Precise segmentation of abdomen diseases like tumor, cyst and stone are crucial in the design of a computer aided diagnostic system. The complexity of shapes and similarity of texture of disease with the surrounding tissues makes the segmentation of abdomen related diseases much more challenging. Thus, this paper is devoted to the segmentation of abdomen diseases using active contour models. The active contour models are formulated using the level-set method. Edge-based Distance Regularized Level Set Evolution (DRLSE) and region based Selective Binary and Gaussian Filtering Regularized Level Set (SBGFRLS) are used for segmentation of various abdomen diseases. These segmentation methods are applied on 60 CT images (20 images each of tumor, cyst and stone). Comparative analysis shows that edge-based active contour models are able to segment abdomen disease more accurately than region-based level set active contour model.


Sign in / Sign up

Export Citation Format

Share Document