Low-profile high-gain micro-strip patch antenna using meta-materials for wireless applications

Author(s):  
Vanshi Upadhyaya ◽  
Vidya Sawant
2013 ◽  
Vol 5 (4) ◽  
pp. 529-535 ◽  
Author(s):  
Archana Agrawal ◽  
Pramod Kumar Singhal ◽  
Ankit Jain

With the ever-increasing need for wireless communication and the emergence of many systems, it is important to design broadband antennas to cover a wide frequency range. The aim of this paper is to design a broadband patch antenna, employing the three techniques of slotting, adding directly coupled parasitic elements and fractal electromagnetic band gap (EBG) structures.The bandwidth is improved from 9.3 to 23.7%. A wideband ranging from 4.15 to 5.27 GHz is obtained. Also, a comparative analysis of embedding EBG structures at different heights is also done. The composite effect of integrating these techniques in the design provides a simple and efficient method for obtaining low-profile, broadband, and high-gain antenna. By the addition of parasitic elements the bandwidth was increased to 18%. Later on by embedding EBG structures the bandwidth was increased up to 23.7%. The design is suitable for a variety of wireless applications like WLAN and radar applications.


In paper, a low profile microstrip patch antenna with rhombus model is designed at an running frequency at 2.4 GHz, 5.2 GHz. Microstrip Patch Antenna are suited to non-plane and plane areas, uncomplicated and effortless to design by used Printed Circuit Technology, it is a mechanically vigorous when it is ascended on rigid places and when the particular patch design model and dimension were selected, it has adjustable in view of resonance frequency, radiation design, impedance and polarization. High Frequency Structural Simulator (HFSS) is a definite component method solver for structures of EM (electromagnetic). The outcome values are discussed and analyzed in view of S11 (Return Loss), 3D Polar Plot, Radiation design and Gain. The value of S11 comes out to be -14.16dB for the designed antenna. The antenna measured length is nearly half wavelength in the dielectric, it is a highly censorious parameter, which governs the antenna resonant frequency. And the final values are simulated using High Frequency Structural Simulator


Author(s):  
Abdelheq Boukarkar ◽  
Rachdi Satouh

Abstract We propose simple designs of compact patch antennas with bandwidth enhancement. Firstly, an inverted “L” strip is loaded onto the corner of one radiating patch edge to create an additional resonant mode which can be combined with that one of the conventional patch to enhance the operating bandwidth. Secondly, the “L” strip is replaced by inverted “T” strip to improve further the bandwidth by creating two adjustable resonant modes. The two proposed patch antennas have the particularity of enhancing the bandwidth significantly without increasing their profile and their overall sizes. Two antenna prototypes are fabricated and tested. Measurements reveal that the patch antenna loaded with “L” strip has stable radiation characteristics with 5.2 times enhancement in the relative bandwidth compared with a conventional patch antenna. The antenna loaded with inverted “T” strip has wider bandwidth (6.25 times wider than the conventional patch) and covers the operating band 5.07–5.89 GHz (15%) with measured peak gain and peak efficiency of 6.25 dBi and 78%, respectively. The proposed antennas are easy to fabricate, have a low-profile, and exhibit good performances which make them good candidates to use in real wireless applications.


Sign in / Sign up

Export Citation Format

Share Document