Channel Modeling of Air-to-Ground Signal Measurement with Two-Ray Ground-Reflection Model for UAV Communication Systems

Author(s):  
Chia-Chuan Chiu ◽  
Ang-Hsun Tsai ◽  
Hsin-Piao Lin ◽  
Chao-Yang Lee ◽  
Li-Chun Wang
2020 ◽  
pp. 31-54
Author(s):  
Caslav Stefanovic ◽  
Danijel Djosic ◽  
Stefan Panic ◽  
Dejan Milic ◽  
Mihajlo Stefanovic

2022 ◽  
Author(s):  
Demos Serghiou ◽  
Mohsen Khalily ◽  
Tim Brown ◽  
Rahim Tafazolli

The Terahertz (THz) band (0.1-3.0 THz) spans a great portion of the Radio Frequency (RF) spectrum that is mostly unoccupied and unregulated. It is a potential candidate for application in Sixth-Generation (6G) wireless networks as it has the capabilities of satisfying the high data rate and capacity requirements of future wireless communication systems. Profound knowledge of the propagation channel is crucial in communication systems design which nonetheless, is still at its infancy as channel modeling at THz frequencies has been mostly limited to characterizing fixed Point-to-Point (P2P) scenarios up to 300 GHz. Provided the technology matures enough and models adapt to the distinctive characteristics of the THz wave, future wireless communications systems will enable a plethora of new use cases and applications to be realized in addition to delivering higher spectral efficiencies that would ultimately enhance the Quality-of-Service (QoS) to the end user. In this paper, we provide an insight into THz channel propagation characteristics, measurement capabilities and modeling methods along with recommendations that will aid in the development of future models in the THz band. We survey the most recent and important measurement campaigns and modeling efforts found in literature based on the use cases and system requirements identified. Finally, we discuss the challenges and limitations of measurements and modeling at such high frequencies and contemplate the future research outlook toward realizing the 6G vision.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 52818-52826 ◽  
Author(s):  
Tao Zhou ◽  
Huayu Li ◽  
Yang Wang ◽  
Liu Liu ◽  
Cheng Tao

Author(s):  
Yusuf Durachman ◽  

MISO (Multiple-Input Single-Output) similar architecture of most terrestrial wireless network networks instead of more and more scientists striving to apply MISO technology to satellite technology, it can be used to achieve a lower rate of application bit error and risk of complications, while managing increased power boost technology. In mitigating the phenomenon increasingly crowded networks, sites, and increasingly strained sources and frequency of orbital interacting. That channel electricity, bit error rate, and single-band dual-polarized probabilities of MISO outage communication systems are evaluated in the paper. In the first step, when the XPD (Cross-Polarization Discrimination) antenna in a certain organism is greater than 1. With the XPD change, the channel throughput increases in scale linearly. Second, under BPSK modulation, it analyses the bit error rate BER of the specification. The design incorporates a sufficiently low (BER) when the SNR is substantial; analysis of the frequency of outage of a distributed MISO system demonstrated when the signal to noise ratio (SNR) is massive, the handset would maintain the prospect of an outage low enough. Assessment of the spectral range of satellite communication, in the analysis process, the criteria of the rice channel are applied to the channel, review excluding certain traits of the dual-polarized satellite MISO. The public would provide great feedback for the productivity of the future of MISO satellite technology. In a previous paper, the author designed a channel modeling dual-band for satellite communication using the MIMO technique. Using this technique, the system cannot achieve greater performance and at the same time using a dual-band will decrease the system's capability. To decrease the above issues, the paper introduces a new method called the MISO system. Using the MISO technique, the system can gain high performance and the system will get greater bandwidth, BER, and SNR. The advantage of using single-band dual-polarized is, uplink and a downlink frequency of the satellite can be calculated very easily and accurately.


Sign in / Sign up

Export Citation Format

Share Document