Setting up an Ultra-Wideband positioning system using off-the-shelf components

Author(s):  
Marco Gunia ◽  
Florian Protze ◽  
Niko Joram ◽  
Frank Ellinger
2007 ◽  
Vol 61 (1) ◽  
pp. 45-62 ◽  
Author(s):  
Hui Yu ◽  
Enrique Aguado ◽  
Gary Brodin ◽  
John Cooper ◽  
David Walsh ◽  
...  

In densely-populated cities or indoor environments, limited visibility to satellites and severe multipath effects significantly affect the accuracy and reliability of satellite-based positioning systems. To meet the needs of “seamless navigation” in these challenging environments an advanced terrestrial positioning system is under development. This system is based upon Ultra-Wideband (UWB) technology, which is a promising candidate for this application due to good time domain resolution and immunity to multipath. This paper presents a detailed analysis of two key aspects of the UWB signal design that will allow it to be used as the basis of such a high performance positioning system: the modulation scheme and the multiple access technique. These two aspects are evaluated in terms of spectral efficiency and synchronisation performance over multipath channels. Thus this paper identifies optimal modulation and multiple access techniques for a long range, high performance terrestrial positioning system using UWB.


2016 ◽  
Vol 04 (01) ◽  
pp. 23-34 ◽  
Author(s):  
Kexin Guo ◽  
Zhirong Qiu ◽  
Cunxiao Miao ◽  
Abdul Hanif Zaini ◽  
Chun-Lin Chen ◽  
...  

Micro unmanned aerial vehicles (UAVs) are promising to play more and more important roles in both civilian and military activities. Currently, the navigation of UAVs is critically dependent on the localization service provided by the Global Positioning System (GPS), which suffers from the multipath effect and blockage of line-of-sight, and fails to work in an indoor, forest or urban environment. In this paper, we establish a localization system for quadcopters based on ultra-wideband (UWB) range measurements. To achieve the localization, a UWB module is installed on the quadcopter to actively send ranging requests to some fixed UWB modules at known positions (anchors). Once a distance is obtained, it is calibrated first and then goes through outlier detection before being fed to a localization algorithm. The localization algorithm is initialized by trilateration and sustained by the extended Kalman filter (EKF). The position and velocity estimates produced by the algorithm will be further fed to the control loop to aid the navigation of the quadcopter. Various flight tests in different environments have been conducted to validate the performance of UWB ranging and localization algorithm.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Santosh Subedi ◽  
Jae-Young Pyun

Recent developments in the fields of smartphones and wireless communication technologies such as beacons, Wi-Fi, and ultra-wideband have made it possible to realize indoor positioning system (IPS) with a few meters of accuracy. In this paper, an improvement over traditional fingerprinting localization is proposed by combining it with weighted centroid localization (WCL). The proposed localization method reduces the total number of fingerprint reference points over the localization space, thus minimizing both the time required for reading radio frequency signals and the number of reference points needed during the fingerprinting learning process, which eventually makes the process less time-consuming. The proposed positioning has two major steps of operation. In the first step, we have realized fingerprinting that utilizes lightly populated reference points (RPs) and WCL individually. Using the location estimated at the first step, WCL is run again for the final location estimation. The proposed localization technique reduces the number of required fingerprint RPs by more than 40% compared to normal fingerprinting localization method with a similar localization estimation error.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1238
Author(s):  
Javier San Martín ◽  
Ainhoa Cortés ◽  
Leticia Zamora-Cadenas ◽  
Bo Joel Svensson

In this paper, we analyze the performance of a positioning system based on the fusion of Ultra-Wideband (UWB) ranging estimates together with odometry and inertial data from the vehicle. For carrying out this data fusion, an Extended Kalman Filter (EKF) has been used. Furthermore, a post-processing algorithm has been designed to remove the Non Line-Of-Sight (NLOS) UWB ranging estimates to further improve the accuracy of the proposed solution. This solution has been tested using both a simulated environment and a real environment. This research work is in the scope of the PRoPART European Project. The different real tests have been performed on the AstaZero proving ground using a Radio Control car (RC car) developed by RISE (Research Institutes of Sweden) as testing platform. Thus, a real time positioning solution has been achieved complying with the accuracy requirements for the PRoPART use case.


2017 ◽  
Vol 40 (5) ◽  
pp. 1608-1614 ◽  
Author(s):  
Di Wu ◽  
Yu Meng ◽  
Qing Gu ◽  
Fei Ma ◽  
Kai Zhan

This paper presents a system that measures the heading angle of underground Load-Haul-Dump (LHD) based on Ultra Wideband (UWB). The system is composed by two UWB modules. The heading angle gives the predictable information for the vehicle localization. Because of the features of underground mines, many current methods for estimating heading angle have limitations in this situation, such as the absence of Global Positioning System (GPS) and the high cost of the positioning methods based on beacons. The range resolution is proportional to the bandwidth of signal. So, the large system bandwidth of UWB offers high accuracy. We estimate the heading angle by measuring the angle between two UWB modules, which is implemented on LHD. The position error of the two modules directly decides the error of heading angle. This paper analyzes and discusses two-dimensional error in theory. The experimental results demonstrate that it is feasible to use the proposed method for an underground environment.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1152 ◽  
Author(s):  
Valentín Barral ◽  
Pedro Suárez-Casal ◽  
Carlos J. Escudero ◽  
José A. García-Naya

Location and tracking needs are becoming more prominent in industrial environments nowadays. Process optimization, traceability or safety are some of the topics where a positioning system can operate to improve and increase the productivity of a factory or warehouse. Among the different options, solutions based on ultra-wideband (UWB) have emerged during recent years as a good choice to obtain highly accurate estimations in indoor scenarios. However, the typical harsh wireless channel conditions found inside industrial environments, together with interferences caused by workers and machinery, constitute a challenge for this kind of system. This paper describes a real industrial problem (location and tracking of forklift trucks) that requires precise internal positioning and presents a study on the feasibility of meeting this challenge using UWB technology. To this end, a simulator of this technology was created based on UWB measurements from a set of real sensors. This simulator was used together with a location algorithm and a physical model of the forklift to obtain estimations of position in different scenarios with different obstacles. Together with the simulated UWB sensor, an additional inertial sensor and optical sensor were modeled in order to test its effect on supporting the location based on UWB. All the software created for this work is published under an open-source license and is publicly available.


Author(s):  
Davide Dardari ◽  
Thomas Feuillen ◽  
Christopher Raucy ◽  
Luc Vandendorpe ◽  
Christophe Craeye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document