scholarly journals A new laboratory technique for determining the compressional wave properties of marine sediments at sonic frequencies and in situ pressures

2013 ◽  
Vol 62 (1) ◽  
pp. 97-116 ◽  
Author(s):  
Clive McCann ◽  
Jeremy Sothcott ◽  
Angus I. Best
2007 ◽  
Vol 32 (2) ◽  
pp. 484-496 ◽  
Author(s):  
Gary B. N. Robb ◽  
Angus I. Best ◽  
Justin K. Dix ◽  
Paul R. White ◽  
Timothy G. Leighton ◽  
...  

Geophysics ◽  
1971 ◽  
Vol 36 (2) ◽  
pp. 266-284 ◽  
Author(s):  
Edwin L. Hamilton

This is one of several interrelated reports concerning sound velocity, elasticity, and related properties of marine sediments from several major environments in the North Pacific and adjacent areas. Previous reports were concerned with methods, measured properties (e.g., compressional‐wave velocity, density, porosity), environmental control, empirical relationships, elastic models for saturated, porous marine sediments, and the computation of elastic moduli. These measured and computed properties were referred to 1 atmosphere pressure and 23°C; all samples were from the sediment surface (0 to 30 cm). This report is concerned with the correction of laboratory values to in‐situ values, and the prediction of in‐situ values in the absence of any sediment data.


2012 ◽  
Vol 209-210 ◽  
pp. 449-457 ◽  
Author(s):  
Giulio Zanaroli ◽  
Annalisa Balloi ◽  
Andrea Negroni ◽  
Luigimaria Borruso ◽  
Daniele Daffonchio ◽  
...  

2021 ◽  
Author(s):  
Lucile Turc ◽  
Markus Battarbee ◽  
Urs Ganse ◽  
Andreas Johlander ◽  
Yann Pfau-Kempf ◽  
...  

<p>The foreshock, extending upstream of the quasi-parallel shock and populated with shock-reflected particles, is home to intense wave activity in the ultra-low frequency range.<em> </em>The most commonly observed of these waves are the “30 s” waves, fast magnetosonic waves propagating sunward in the plasma rest frame, but carried earthward by the faster solar wind flow. These waves are thought to be the main source of Pc3 magnetic pulsations (10 – 45 s) in the dayside magnetosphere. A handful of case studies with suitable spacecraft conjunctions have allowed simultaneous investigations of the wave properties in different geophysical regions, but the global picture of the wave transmission from the foreshock through the magnetosheath into the magnetosphere is still not known. In this work, we use global simulations performed with the hybrid-Vlasov model Vlasiator to study the Pc3 wave properties in the foreshock, magnetosheath and magnetosphere for different solar wind conditions. We find that in all three regions the wave power peaks at higher frequencies when the interplanetary magnetic field strength is larger, consistent with previous studies. While the transverse wave power decreases with decreasing Alfvén Mach number in the foreshock, the compressional wave power shows little variation. In contrast, in the magnetosheath and the magnetosphere, the compressional wave power decreases with decreasing Mach number. Inside the magnetosphere, the distribution of wave power varies with the IMF cone angle. We discuss the implications of these results for the propagation of foreshock waves across the different geophysical regions, and in particular their transmission through the bow shock.</p>


1977 ◽  
Vol 14 (12) ◽  
pp. 2824-2857 ◽  
Author(s):  
G. H. Miller ◽  
J. T. Andrews ◽  
S. K. Short

A study of the stratigraphic sequence (14C and amino acid age control), marine bivalve faunal changes, and palynology of buried soils and organic-rich sediment collected from the Clyde Foreland Formation in the extensive cliff sections of the Clyde foreland, eastern Baffin Island, N.W.T., suggests the following last interglacial – Foxe (last glaciation) glacial – present interglacial sequence.(1) Cape Christian Member (ca. 130 000 years BP?)Consists of the Sledgepointer till overlain by the Cape Christian marine sediments. In situ molluscan fauna, collected from the marine sediments, contain a moderately warm bivalve assemblage. A well-developed soil that formed on the marine sediments (Cape Christian soil) contains an interglacial pollen assemblage dominated by dwarf birch. U-series dates of > 115 000 and ca. 130 000 years BP on molluscs from the Cape Christian marine sediments suggest that they were deposited during the last interglaciation, here termed the Cape Christian Interglaciation. The development of a subarctic pollen assemblage in the Cape Christian soil has not been duplicated during the present interglaciation, suggesting higher summer temperatures and perhaps a duration well in excess of 10 000 years for the last interglaciation.(2) Kuvinilk MemberConsists of fossiliferous marine sediments, locally divided by the Clyde till into upper and lower units. The Clyde till was deposited by the earliest and most extensive advance of the Foxe (last) Glaciation. Kuvinilk marine sediments both under- and overlying the Clyde till contain the pecten Chlamys islandicus, indicating that the outlet glacier advanced into a subarctic marine environment. Amino acid ratios from in situ pelecypod shells abovę and below the Clyde till are not statistically different, but contrast markedly with ratios obtained from the same species in the Cape Christian Member. Organic horizons within the Kuvinilk marine sediments contain a relatively rich pollen assemblage, although 'absolute' counts are low.(3) Kogalu Member (> 35 00014C years BP)Sediments of the Kogalu Member unconformably overlie those of the Kuvinilk Member, but are of a similar character. The dominant sediments are marine in origin, but in places are divided into upper and lower units by the Ayr Lake till. Amino acid ratios from in situ shells above and below the Ayr Lake till are indistinguishable, but substantially less than those in the Kuvinilk Member, suggesting the two members are separated by a considerable time interval. Radiocarbon dates on shells in the Kogalu marine sediments range from 33 000 to 47 700 years BP, but these may be only minimum estimates. The sea transgressed to a maximum level 70–80 m asl, coincident with the glacial maximum. Subarctic marine fauna of interstadial–interglacial character occur within the Kogalu marine sediments.(4) Eglinton Member (10 000 years BP to present)A major unconformity exists between the Kogalu and Eglinton Members. Ravenscraig marine sediments were deposited during an early Holocene marine transgression–regression cycle; the oldest dates on these sediments are ca. 10 000 years BP. Locally a vegetation mat occurs at the base or within the Ravenscraig unit. Pollen from these beds is sparse, but indicates a terrestrial vegetation assemblage as diverse as that of today. There is no evidence that Laurentide Ice reached the foreland during the last 30 000 years. Eolian sands that overlie a soil developed on the marine sediments record a late Holocene climatic deterioration. Pollen in organic-rich sediments at the base of, and within, the eolian sands record a vegetation shift in response to climatic change.


Author(s):  
Richard H. Bennett ◽  
Huon Li ◽  
Michael D. Richardson ◽  
Peter Fleischer ◽  
Douglas N. Lambert ◽  
...  

2020 ◽  
Author(s):  
Claus Pelikan ◽  
Kenneth Wasmund ◽  
Clemens Glombitza ◽  
Bela Hausmann ◽  
Craig W. Herbold ◽  
...  

AbstractMicroorganisms in marine sediments play major roles in marine biogeochemical cycles by mineralizing substantial quantities of organic matter from decaying cells. Proteins and lipids are abundant components of necromass, yet the taxonomic identities of microorganisms that actively degrade them remain poorly resolved. Here, we revealed identities, trophic interactions, and genomic features of bacteria that degraded 13C-labeled proteins and lipids in cold anoxic microcosms containing sulfidic subarctic marine sediment. Supplemented proteins and lipids were rapidly fermented to various volatile fatty acids within 5 days. DNA-stable isotope probing (SIP) suggested Psychrilyobacter atlanticus was an important primary degrader of proteins, and Psychromonas members were important primary degraders of both proteins and lipids. Closely related Psychromonas populations, as represented by distinct 16S rRNA gene variants, differentially utilized either proteins or lipids. DNA-SIP also showed 13C-labeling of various Deltaproteobacteria within 10 days, indicating trophic transfer of carbon to putative sulfate-reducers. Metagenome-assembled genomes revealed the primary hydrolyzers encoded secreted peptidases or lipases, and enzymes for catabolism of protein or lipid degradation products. Psychromonas species are prevalent in diverse marine sediments, suggesting they are important players in organic carbon processing in situ. Together, this study provides new insights into the identities, functions, and genomes of bacteria that actively degrade abundant necromass macromolecules in the seafloor.


Sign in / Sign up

Export Citation Format

Share Document