scholarly journals The impact of elevated temperature and drought on the ecology and evolution of plant–soil microbe interactions

2019 ◽  
Vol 108 (1) ◽  
pp. 337-352 ◽  
Author(s):  
Pil U. Rasmussen ◽  
Alison E. Bennett ◽  
Ayco J. M. Tack
2010 ◽  
Vol 343 (1-2) ◽  
pp. 17-35 ◽  
Author(s):  
Erich Inselsbacher ◽  
Wolfgang Wanek ◽  
Katrin Ripka ◽  
Evelyn Hackl ◽  
Angela Sessitsch ◽  
...  

2014 ◽  
Vol 38 (3) ◽  
pp. 298-310 ◽  
Author(s):  
WU Lin-Kun ◽  
◽  
LIN Xiang-Min ◽  
and LIN Wen-Xiong

2011 ◽  
Vol 39 (3) ◽  
pp. 600-608 ◽  
Author(s):  
Krikor Andonian ◽  
José L. Hierro ◽  
Liana Khetsuriani ◽  
Pablo I. Becerra ◽  
Grigor Janoyan ◽  
...  

2013 ◽  
Vol 734-737 ◽  
pp. 1119-1123
Author(s):  
Qing Hong Wang ◽  
Gu Zhang Zhuang ◽  
Chun Mei Wang

The viscosity of Pulp will affect the grinding rate directly, Elevated temperature, the slurry viscosity reduced. In order to study the effect on the grinding rate of temperature, we did the experiment by only changing the temperature, and three groups of contrast test was carried out. The results show that the grinding rate is improved obviously, when the grinding temperature increases from 16 °C to 42 °C.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1239
Author(s):  
Chouaïb Meziadi ◽  
Julie Lintz ◽  
Masoud Naderpour ◽  
Charlotte Gautier ◽  
Sophie Blanchet ◽  
...  

In the context of climate change, elevated temperature is a major concern due to the impact on plant–pathogen interactions. Although atmospheric temperature is predicted to increase in the next century, heat waves during summer seasons have already become a current problem. Elevated temperatures strongly influence plant–virus interactions, the most drastic effect being a breakdown of plant viral resistance conferred by some major resistance genes. In this work, we focused on the R-BPMV gene, a major resistance gene against Bean pod mottle virus in Phaseolus vulgaris. We inoculated different BPMV constructs in order to study the behavior of the R-BPMV-mediated resistance at normal (20 °C) and elevated temperatures (constant 25, 30, and 35 °C). Our results show that R-BPMV mediates a temperature-dependent phenotype of resistance from hypersensitive reaction at 20 °C to chlorotic lesions at 35 °C in the resistant genotype BAT93. BPMV is detected in inoculated leaves but not in systemic ones, suggesting that the resistance remains heat-stable up to 35 °C. R-BPMV segregates as an incompletely dominant gene in an F2 population. We also investigated the impact of elevated temperature on BPMV infection in susceptible genotypes, and our results reveal that elevated temperatures boost BPMV infection both locally and systemically in susceptible genotypes.


2012 ◽  
Vol 32 (4) ◽  
pp. 689-697 ◽  
Author(s):  
Nereu A. Streck ◽  
Lilian O. Uhlmann ◽  
Alencar J. Zanon ◽  
Dilson A. Bisognin

The objective of this study was to simulate the impact of elevated temperature scenarios on leaf development of potato in Santa Maria, RS, Brazil. Leaf appearance was estimated using a multiplicative model that has a non-linear temperature response function which calculates the daily leaf appearance rate (LAR, leaves day-1) and the accumulated number of leaves (LN) from crop emergence to the appearance of the upper last leaf. Leaf appearance was estimated during 100 years in the following scenarios: current climate, +1 °C, +2 °C, +3 °C, +4 °C e +5 °C. The LAR model was estimated with coefficients of the Asterix cultivar in five emergence dates and in two growing seasons (Fall and Spring). Variable of interest was the duration (days) of the crop emergence to the appearance of the final leaf number (EM-FLN) phase. Statistical analysis was performed assuming a three-factorial experiment, with main effects being climate scenarios, growing seasons, and emergence dates in a completely randomized design using years (one hundred) as replications. The results showed that warmer scenarios lead to an increase, in the fall, and a decrease, in the spring growing season, in the duration of the leaf appearance phase, indicating high vulnerability and complexity of the response of potato crop grown in a Subtropical environment to climate change.


Author(s):  
Hiro Yoshida ◽  
Takashi Nakashima ◽  
Makoto Yoshida ◽  
Yasushi Hara ◽  
Toru Shimamori

A new high quality turbine system using monolithic silicon-nitride ceramic is under development. In this study particle impact tests of the silicon-nitride have been tried at room and elevated temperatures with and without tensile load, which simulates centrifugal force of blade rotation. In the experiment 1 mm diameter particle is impacted at velocities up to 900 m s−1. In this paper, critical velocities for bending fracture and Hertzian cracks are examined. Moreover, strength degradation at elevated temperature and spall fracture of the blade are discussed. The main results are: 1) The bending fracture mode critical impact velocity for soft particles is higher than that for hard particles. 2)The impact parameter ϕ for initiation of Hertzian cracks ranges 1.08×10−5 – 1.56×10−5 for the materials tested. 3)Strength degradation at elevated temperature was clearly observed. 4) In the impact tests on blades spall fracture, which was caused by interaction of stress waves, appeared.


Sign in / Sign up

Export Citation Format

Share Document