scholarly journals R-BPMV-Mediated Resistance to Bean pod mottle virus in Phaseolus vulgaris L. Is Heat-Stable but Elevated Temperatures Boost Viral Infection in Susceptible Genotypes

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1239
Author(s):  
Chouaïb Meziadi ◽  
Julie Lintz ◽  
Masoud Naderpour ◽  
Charlotte Gautier ◽  
Sophie Blanchet ◽  
...  

In the context of climate change, elevated temperature is a major concern due to the impact on plant–pathogen interactions. Although atmospheric temperature is predicted to increase in the next century, heat waves during summer seasons have already become a current problem. Elevated temperatures strongly influence plant–virus interactions, the most drastic effect being a breakdown of plant viral resistance conferred by some major resistance genes. In this work, we focused on the R-BPMV gene, a major resistance gene against Bean pod mottle virus in Phaseolus vulgaris. We inoculated different BPMV constructs in order to study the behavior of the R-BPMV-mediated resistance at normal (20 °C) and elevated temperatures (constant 25, 30, and 35 °C). Our results show that R-BPMV mediates a temperature-dependent phenotype of resistance from hypersensitive reaction at 20 °C to chlorotic lesions at 35 °C in the resistant genotype BAT93. BPMV is detected in inoculated leaves but not in systemic ones, suggesting that the resistance remains heat-stable up to 35 °C. R-BPMV segregates as an incompletely dominant gene in an F2 population. We also investigated the impact of elevated temperature on BPMV infection in susceptible genotypes, and our results reveal that elevated temperatures boost BPMV infection both locally and systemically in susceptible genotypes.

Author(s):  
Hiro Yoshida ◽  
Takashi Nakashima ◽  
Makoto Yoshida ◽  
Yasushi Hara ◽  
Toru Shimamori

A new high quality turbine system using monolithic silicon-nitride ceramic is under development. In this study particle impact tests of the silicon-nitride have been tried at room and elevated temperatures with and without tensile load, which simulates centrifugal force of blade rotation. In the experiment 1 mm diameter particle is impacted at velocities up to 900 m s−1. In this paper, critical velocities for bending fracture and Hertzian cracks are examined. Moreover, strength degradation at elevated temperature and spall fracture of the blade are discussed. The main results are: 1) The bending fracture mode critical impact velocity for soft particles is higher than that for hard particles. 2)The impact parameter ϕ for initiation of Hertzian cracks ranges 1.08×10−5 – 1.56×10−5 for the materials tested. 3)Strength degradation at elevated temperature was clearly observed. 4) In the impact tests on blades spall fracture, which was caused by interaction of stress waves, appeared.


Plant Disease ◽  
2007 ◽  
Vol 91 (6) ◽  
pp. 719-726 ◽  
Author(s):  
Amy D. Ziems ◽  
Loren J. Giesler ◽  
George L. Graef ◽  
Margaret G. Redinbaugh ◽  
Jean L. Vacha ◽  
...  

Bean pod mottle virus (BPMV) has become increasingly common in soybean throughout the north-central region of the United States. Yield loss assessments on southern soybean germplasm have reported reductions ranging from 3 to 52%. Currently, no soybean cultivars have been identified with resistance to BPMV. The objective of this study was to determine the impact of BPMV infection on soybean cultivars representing a broad range of northern soybean germ-plasm by comparing inoculated and noninoculated soybean plants in paired row studies. In all, 30 and 24 cultivars were evaluated in Nebraska (NE) in which soybean plants were inoculated at the V3 to V4 growth stage. Eleven cultivars from public and breeding lines were inoculated at the VC and R5 to R6 growth stages in Ohio (OH). Disease severity, yield, and percent seed coat mottling were assessed at both locations, whereas protein and oil content also were assessed at NE. Yield and percent seed coat mottling was significantly reduced following inoculation at the VC (OH) and V3 to V4 (NE) growth stages. In addition, seed oil and protein composition were impacted in 1 of the 2 years of the study. This study demonstrates that substantial yield losses can occur in soybean due to BPMV infection. In addition, protein and oil may be affected depending on the environment during the production season.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1995 ◽  
Author(s):  
Yongxin Yang ◽  
Yanju Jiang ◽  
Hongjun Liang ◽  
Xiaosan Yin ◽  
Yue Huang

Elevated temperature exposure has a negative effect on the performance of the matrix resin in Carbon Fiber Reinforced Plastics (CFRP) plates, whereas limited quantitative research focuses on the deteriorations. Therefore, 30 CFRP specimens were designed and tested under elevated temperatures (10, 30, 50, 70, and 90 °C) to explore the degradations in tensile properties. The effect of temperature on the failure mode, stress-strain curve, tensile strength, elastic modulus and elongation of CFRP plates were investigated. The results showed that elevated temperature exposure significantly changed the failure characteristics. When the exposed temperature increased from 10 °C to 90 °C, the failure mode changed from the global factures in the whole CFRP plate to the successive fractures in carbon fibers. Moreover, with temperatures increasing, tensile strength and elongation of CFRP plates decreases gradually while the elastic modulus shows negligible change. Finally, the results of One-Way Analysis of Variance (ANOVA) show that the degradation of the tensile strength of CFRP plates was due to the impact of elevated temperature exposure, rather than the test error.


Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 563 ◽  
Author(s):  
Stefan Timm ◽  
Franziska Woitschach ◽  
Carolin Heise ◽  
Martin Hagemann ◽  
Hermann Bauwe

Photorespiration metabolizes 2-phosphoglyolate (2-PG) to avoid inhibition of carbon assimilation and allocation. In addition to 2-PG removal, photorespiration has been shown to play a role in stress protection. Here, we studied the impact of faster 2-PG degradation through overexpression of 2-PG phosphatase (PGLP) on the abiotic stress-response of Arabidopsis thaliana (Arabidopsis). Two transgenic lines and the wild type were subjected to short-time high light and elevated temperature stress during gas exchange measurements. Furthermore, the same lines were exposed to long-term water shortage and elevated temperature stresses. Faster 2-PG degradation allowed maintenance of photosynthesis at combined light and temperatures stress and under water-limiting conditions. The PGLP-overexpressing lines also showed higher photosynthesis compared to the wild type if grown in high temperatures, which also led to increased starch accumulation and shifts in soluble sugar contents. However, only minor effects were detected on amino and organic acid levels. The wild type responded to elevated temperatures with elevated mRNA and protein levels of photorespiratory enzymes, while the transgenic lines displayed only minor changes. Collectively, these results strengthen our previous hypothesis that a faster photorespiratory metabolism improves tolerance against unfavorable environmental conditions, such as high light intensity and temperature as well as drought. In case of PGLP, the likely mechanism is alleviation of inhibitory feedback of 2-PG onto the Calvin–Benson cycle, facilitating carbon assimilation and accumulation of transitory starch.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4294
Author(s):  
Jinghua Cong ◽  
Jiangwen Li ◽  
Jiajie Fan ◽  
Pengcheng Liu ◽  
Raja Devesh Kumar Misra ◽  
...  

In this study, we address the challenge of obtaining high strength at ambient and elevated temperatures in fire-resistant Ti–Mo–V steel with ferrite microstructures through thermo-mechanical controlled processing (TMCP). Thermally stable interphase precipitation of (Ti, Mo, V)C was an important criterion for retaining strength at elevated temperatures. Electron microscopy indicated that interphase precipitation occurred during continuous cooling after controlled rolling, where the volume fraction of interphase precipitation was controlled by the laminar cooling temperature. The interphase precipitation of MC carbides with an NaCl-type crystal structure indicated a Baker–Nutting (B–N) orientation relationship with ferrite. When the steel was isothermally held at 600 °C for up to 3 h, interphase precipitation occurred during TMCP with high thermal stability. At the same time, some random precipitation took place during isothermal holding. The interphase precipitation increased the elastic modulus of the experimental steels at an elevated temperature. It is proposed that fire-resistant steel with thermally stable interphase precipitation is preferred, which enhances precipitation strengthening and dislocation strengthening at elevated temperatures.


2002 ◽  
Vol 27 (5) ◽  
pp. 525-527 ◽  
Author(s):  
ELIEZER R. SOUTO ◽  
ÁLVARO M. R. ALMEIDA ◽  
ANÉSIO BIANCHINI ◽  
FÁBIO SARTORI ◽  
ÉBERSON S. CALVO

Nas áreas produtoras de feijão (Phaseolus vulgaris) do Estado do Paraná observa-se anualmente a ocorrência do vírus do mosaico em desenho do feijoeiro (Bean rugose mosaic virus, BRMV), principalmente em infecções mistas com o vírus do mosaico dourado do feijoeiro (Bean golden mosaic virus, BGMV), acarretando maior severidade de sintomas e causando perdas na produção. Recentemente constatou-se a presença do vírus do mosaico severo do caupi (Cowpea severe mosaic virus, CPSMV) associado a sintomas de queima do broto em plantações de soja (Glycine max) na região de Londrina, sendo este um fato novo no Estado. Neste trabalho, parte do RNA2 de dois comovirus isolados de soja no Paraná foram clonados e sequenciados, sendo 600 pares de bases (pb) do BRMV-PR e 594 pb do CPSMV-PR. Posteriormente, as seqüências correspondentes de aminoácidos foram comparadas com seis seqüências de vírus do gênero Comovirus depositadas no GenBank. Com base nestes dados observou-se que o segmento do RNA2 do isolado CPSMV-PR apresentou homologia de 85% com parte de uma seqüência já conhecida do RNA2 do CPSMV, enquanto que o segmento do RNA2 do isolado BRMV-PR apresentou homologia de 39% com o CPSMV, e de 44% com o Bean pod mottle virus (BPMV). Este trabalho apresenta pela primeira vez dados de sequenciamento parcial do BRMV, o que poderá contribuir para sua completa caracterização molecular e para o estabelecimento de estratégias para obtenção de plantas resistentes ao vírus.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000801-000808 ◽  
Author(s):  
Jiawei Zhang ◽  
Zhou Hai ◽  
Sivasubramanian Thirugnanasambandam ◽  
John L. Evans ◽  
M. J. Bozack

Electronics assemblies containing solder joints are often exposed to elevated temperatures for prolonged periods of time. The time-at-temperature stress impacts the overall package reliability of the assembled circuitry due to evolving materials, microstructural, and mechanical properties. It is especially important to understand the impact of isothermal aging on the long term behavior of lead (Pb)-free solder joints which operate in harsh environments. In this study, we have explored the effects of elevated temperature isothermal aging on the reliability of Sn-Ag-Cu (SAC) assemblies on board level packages. As the isothermal aging temperature increases, the Weybull characteristic lifetime for SAC 105 and 305 solder joints is drastically reduced compared to Sn-37Pb.In parallel mechanical studies on bulk solder specimens, the creep rate for SAC105, 305 rapidly increases with aging. A full test matrix with varying aging temperatures and solder alloys was considered. Package sizes ranged from 19mm, 0.8mm pitch ball grid arrays (BGAs) to 5mm, 0.4mm pitch μBGAs. The test structures were built on three different board finishes (ImSn, ImAg and SnPb). Storage condition temperatures were 25°C, 55°C, 85°C and 125°C with aging over time periods of 0, 6, and 12 months. Subsequently, the specimens were thermally cycled from −40°C to 125°C with 15 min dwell times at the high temperature. It was found that the thermal performance of lead-free fine-pitch packages significantly degrades up to 55–60% after aging at elevated temperature. The dominant failure mode can be associated with the growth of Cu6Sn5 intermetallic compounds (IMC) during the aging, particularly on the pad side.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5521
Author(s):  
Krzysztof Przystupa ◽  
Daniel Pieniak ◽  
Waldemar Samociuk ◽  
Agata Walczak ◽  
Grzegorz Bartnik ◽  
...  

The paper presents the results of the research into the impact of impregnation of wood on its bending strength and elastic modulus under normal conditions and after thermal treatment and investigates its structural reliability. Pinewood, non-impregnated and pressure impregnated with a solution with SiO2 nanoparticles, was used in this research. The use of nanoparticles decreases the flammability of timber among others. Some of the tested samples were treated at 250 °C. This temperature corresponds to the boundary of the self-ignition of wood. This elevated temperature was assumed to be reached by a given speed of heating within 10 min, and then the samples were stored in these conditions for 10 and 20 min. The tests demonstrate that the bending strength of the impregnated wood was slightly improved, the impregnation did not impact the elastic modulus of the material in all such conditions, and the residual strength decreased less for the wood impregnated after being exposed to the elevated temperatures. The reliability analysis proves a positive effect of impregnation with a solution with SiO2 on the durability of wood, both after being exposed to normal and elevated temperatures. The distribution of the failure rates indicates a more intensive degradation of non-impregnated wood. The distribution of the survival function demonstrates a more probable non-destruction of impregnated wood after elevated temperature conditions.


BIO-PROTOCOL ◽  
2015 ◽  
Vol 5 (13) ◽  
Author(s):  
St�phanie Pflieger ◽  
Sophie Blanchet ◽  
Chouaib Meziadi ◽  
Manon Richard ◽  
Val�rie Geffroy

Sign in / Sign up

Export Citation Format

Share Document