scholarly journals Beech cupules as keystone structures for soil fauna

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2562 ◽  
Author(s):  
Nereida Melguizo-Ruiz ◽  
Gerardo Jiménez-Navarro ◽  
Jordi Moya-Laraño

Facilitative or positive interactions are ubiquitous in nature and play a fundamental role in the configuration of ecological communities. In particular, habitat modification and niche construction, in which one organism locally modifies abiotic conditions and favours other organisms by buffering the effects of adverse environmental factors, are among the most relevant facilitative interactions. In line with this, ‘keystone structures’, which provide resources, refuge, or advantageous services decisive for other species, may allow the coexistence of various species and thus considerably contribute to diversity maintenance. Beech cupules are woody husks harbouring beech fruits that remain in the forest soil for relatively long periods of time. In this study, we explored the potential role of these cupules in the distribution and maintenance of the soil fauna inhabiting the leaf litter layer. We experimentally manipulated cupule availability and soil moisture in the field to determine if such structures are limiting and can provide moist shelter to soil animals during drought periods, contributing to minimize desiccation risks. We measured invertebrate abundances inside relative to outside the cupules, total abundances in the leaf litter and animal body sizes, in both dry and wet experimental plots. We found that these structures are preferentially used by the most abundant groups of smaller soil animals—springtails, mites and enchytraeids—during droughts. Moreover, beech cupules can be limiting, as an increase in use was found with higher cupule densities, and are important resources for many small soil invertebrates, driving the spatial structure of the soil community and promoting higher densities in the leaf litter, probably through an increase in habitat heterogeneity. We propose that fruit woody structures should be considered ‘keystone structures’ that contribute to soil community maintenance. Therefore, beech trees may indirectly facilitate soil fauna activities through their decaying fruit husks, hence acting as ecosystem engineers.

2020 ◽  
Vol 108 (6) ◽  
pp. 2283-2297 ◽  
Author(s):  
Shixing Zhou ◽  
Olaf Butenschoen ◽  
Sandra Barantal ◽  
Ira Tanya Handa ◽  
Marika Makkonen ◽  
...  

Author(s):  
Jaroslav Smrž ◽  
Tomáš Kučera ◽  
Zdeněk Vašků

Mainly abiotic factors have been considered in examining soil fauna invasion or settlement. The role of soil animals communities was not considered. Our hypothesis, indeed, can be formulated: the structure and feeding habits of the soil animals community is not able to play some role in the soil rating. Localities, however, can be fragmented into microhabitats. We studied cultivated field and adjacent unploughed areas (so-called baulks), using the common Berlese–Tullgren apparatus for community structure studies followed by histological tests of food consumed by community members. We selected a group of oribatid mites, which are frequent and abundant. In the studied localities and their microhabitats, three groups of oribatid mites can be reported. First – ubiquitous species a second – migrants from the less-impacted to more-impacted microhabitats and third – specialists sensitive to severe environmental conditions in more-impacted microhabitat. They consequently live only in the less-severe, less-impacted unploughed soils and never migrate from these microhabitats. Their grazed and digested food is more diversified, and they included more feeding specialists.


2013 ◽  
Vol 21 (2) ◽  
pp. 206-213 ◽  
Author(s):  
Yuan Zhizhong ◽  
Cui Yang ◽  
Yan Shaokui

2003 ◽  
Vol 81 (4) ◽  
pp. 330-337 ◽  
Author(s):  
Steven J Franks

While there is substantial evidence for facilitation, the effects of such factors as stress and species identity on positive interactions remain controversial. At two coastal dune sites, I tested the hypotheses that facilitative interactions increase with increasing stress and disturbance along an environmental gradient and that facilitative interactions are stronger among heterospecific than among conspecific individuals. I transplanted Uniola paniculata and Iva imbricata plants into plots along with four conspecific neighbors, four heterospecific neighbors, or no neighbors across an environmental gradient. Neighbors increased target plant survival, suggesting facilitation, but biomass of targets was reduced by the presence of neighbors, suggesting competition. Unexpectedly, competition was greatest in the purportedly most stressful and disturbed zone. In this study, the outcome of neighbor interactions differed for biomass and survival and depended on position along the environmental gradient, but was independent of neighbor identity.Key words: competition, disturbance, facilitation, Iva imbricata, stress, Uniola paniculata.


2017 ◽  
Vol 284 (1861) ◽  
pp. 20171174 ◽  
Author(s):  
Brianna K. McHorse ◽  
Andrew A. Biewener ◽  
Stephanie E. Pierce

Digit reduction is a major trend that characterizes horse evolution, but its causes and consequences have rarely been quantitatively tested. Using beam analysis on fossilized centre metapodials, we tested how locomotor bone stresses changed with digit reduction and increasing body size across the horse lineage. Internal bone geometry was captured from 13 fossil horse genera that covered the breadth of the equid phylogeny and the spectrum of digit reduction and body sizes, from Hyracotherium to Equus . To account for the load-bearing role of side digits, a novel, continuous measure of digit reduction was also established—toe reduction index (TRI). Our results show that without accounting for side digits, three-toed horses as late as Parahippus would have experienced physiologically untenable bone stresses. Conversely, when side digits are modelled as load-bearing, species at the base of the horse radiation through Equus probably maintained a similar safety factor to fracture stress. We conclude that the centre metapodial compensated for evolutionary digit reduction and body mass increases by becoming more resistant to bending through substantial positive allometry in internal geometry. These results lend support to two historical hypotheses: that increasing body mass selected for a single, robust metapodial rather than several smaller ones; and that, as horse limbs became elongated, the cost of inertia from the side toes outweighed their utility for stabilization or load-bearing.


2021 ◽  
pp. 1-13
Author(s):  
Laura E. Quiñones-Camacho ◽  
Caroline P. Hoyniak ◽  
Lauren S. Wakschlag ◽  
Susan B. Perlman

Abstract While substantial research supports the role of parent–child interactions on the emergence of psychiatric symptoms, few studies have explored biological mechanisms for this association. The current study explored behavioral and neural parent–child synchronization during frustration and play as predictors of internalizing and externalizing behaviors across a span of 1.5 years. Parent–child dyads first came to the laboratory when the child was 4–5 years old and completed the Disruptive Behavior Diagnostic Observation Schedule: Biological Synchrony (DB-DOS: BioSync) task while functional near-infrared spectroscopy (fNIRS) data were recorded. Parents reported on their child's internalizing and externalizing behaviors using the Child Behavior Checklist (CBCL) four times over 1.5 years. Latent growth curve (LGC) modeling was conducted to assess neural and behavioral synchrony as predictors of internalizing and externalizing trajectories. Consistent with previous investigations in this age range, on average, internalizing and externalizing behaviors decreased over the four time points. Parent–child neural synchrony during a period of play predicted rate of change in internalizing but not externalizing behaviors such that higher parent–child neural synchrony was associated with a more rapid decrease in internalizing behaviors. Our results suggest that a parent–child dyad's ability to coordinate neural activation during positive interactions might serve as a protective mechanism in the context of internalizing behaviors.


Author(s):  
Cang Hui ◽  
◽  
Pietro Landi ◽  
Guillaume Latombe ◽  
◽  
...  

Changes in biotic interactions in the native and invaded range can enable a non-native species to establish and spread in novel environments. Invasive non-native species can in turn generate impacts in recipient systems partly through the changes they impose on biotic interactions; these interactions can lead to altered ecosystem processes in the recipient systems. This chapter reviews models, theories and hypotheses on how invasion performance and impact of introduced species in recipient ecosystems can be conjectured according to biotic interactions between native and non-native species. It starts by exploring the nature of biotic interactions as ensembles of ecological and evolutionary games between individuals of both the same and different groups. This allows us to categorize biotic interactions as direct and indirect (i.e. those involving more than two species) that emerge from both coevolution and ecological fitting during community assembly and invasion. We then introduce conceptual models that can reveal the ecological and evolutionary dynamics between interacting non-native and resident species in ecological networks and communities. Moving from such theoretical grounding, we review 20 hypotheses that have been proposed in invasion ecology to explain the invasion performance of a single non-native species, and seven hypotheses relating to the creation and function of assemblages of non-native species within recipient ecosystems. We argue that, although biotic interactions are ubiquitous and quintessential to the assessment of invasion performance, they are nonetheless difficult to detect and measure due to strength dependency on sampling scales and population densities, as well as the non-equilibrium transient dynamics of ecological communities and networks. We therefore call for coordinated efforts in invasion science and beyond, to devise and review approaches that can rapidly map out the entire web of dynamic interactions in a recipient ecosystem.


Sign in / Sign up

Export Citation Format

Share Document