The eco‐evolutionary dynamics of prior selfing rates promote coexistence without niche partitioning under conditions of reproductive interference

2021 ◽  
Author(s):  
Koki R. Katsuhara ◽  
Yuuya Tachiki ◽  
Ryosuke Iritani ◽  
Atushi Ushimaru
2020 ◽  
Author(s):  
Koki R. Katsuhara ◽  
Yuuya Tachiki ◽  
Ryosuke Iritani ◽  
Atushi Ushimaru

AbstractWhen the two or more plants species share the same pollinators, pollinator-mediated reproductive interference make coexistence difficult. Recent studies suggested prior autonomous selfing mitigate reproductive interference, could enabling coexistence without pollination niche partitioning (pre-emptive selfing hypothesis). However, there are no studies to test whether evolution of prior selfing promote the coexistence, considering eco-evolutionary dynamics of population size, selfing rate and inbreeding depression.To examine conditions that the evolution of prior selfing promote coexistence under mutual reproductive interference especially in the point of view for pollinator availability and dynamics of inbreeding depression, we constructed individual-based model in which two plant species compete against each other in the form of mutual reproductive interference and can evolve prior autonomous selfing rate. We expected that purging of deleterious mutations could cause evolutionary rescue because inferior species could rescue population density through the evolution of prior selfing if the strength of inbreeding depression decreases with an increase of population’s selfing rate.Our simulation demonstrated that the evolution of prior selfing could promote the coexistence while reproductive interference caused competitive exclusion without evolution. We found that lower pollinator availability tended to prefer rapid evolutionary shift to higher prior selfing rate, it neutralizes the negative effect of reproductive interference, and population dynamics exhibit neutral random walk in both species. When the strength of inbreeding depression decreased with an increase in population’s selfing rate, moderate pollinator availability resulted in long-term coexistence in which relative-abundance-dependent selection on the prior selfing rate rescue population density of inferior species intermittently.Synthesis. We showed that the evolution of prior selfing could increase population growth rate of inferior species and consequently enable the long-term coexistence with evolutionary rescue. This is the new mechanisms explaining co-evolutionary coexistence of closely related plant species without niche partitioning and consistent with recent studies reported that closely related mixed-mating species are sympatrically growing even under the mutual reproductive interference.


2017 ◽  
Vol 284 (1855) ◽  
pp. 20170546 ◽  
Author(s):  
Graham J. Slater ◽  
Jeremy A. Goldbogen ◽  
Nicholas D. Pyenson

Vertebrates have evolved to gigantic sizes repeatedly over the past 250 Myr, reaching their extreme in today's baleen whales (Mysticeti). Hypotheses for the evolution of exceptionally large size in mysticetes range from niche partitioning to predator avoidance, but there has been no quantitative examination of body size evolutionary dynamics in this clade and it remains unclear when, why or how gigantism evolved. By fitting phylogenetic macroevolutionary models to a dataset consisting of living and extinct species, we show that mysticetes underwent a clade-wide shift in their mode of body size evolution during the Plio-Pleistocene. This transition, from Brownian motion-like dynamics to a trended random walk towards larger size, is temporally linked to the onset of seasonally intensified upwelling along coastal ecosystems. High prey densities resulting from wind-driven upwelling, rather than abundant resources alone, are the primary determinant of efficient foraging in extant mysticetes and Late Pliocene changes in ocean dynamics may have provided an ecological pathway to gigantism in multiple independent lineages.


2018 ◽  
Author(s):  
Ryosuke Iritani ◽  
Suzuki Noriyuki

AbstractNegative interspecific mating interactions, known as reproductive interference, can hamper species coexistence in a local patch and promote niche partitioning or geographical segregation of closely related species. Conspecific sperm precedence (CSP), which occurs when females that have mated with both conspecific and heterospecific males preferentially use conspecific sperm for fertilization, might contribute to species coexistence by mitigating the costs of interspecific mating and hybridization. We examined whether two closely related species exhibiting CSP can coexist in a local environment in the presence of reproductive interference. First, using a behaviourally explicit mathematical model, we demonstrated that two species characterized by negative mating interactions are unlikely to coexist because the costs of reproductive interference, such as loss of mating opportunity with conspecific partners, are inevitably incurred when individuals of both species are present. Second, we experimentally demonstrated differences in mating activity and preference in twoHarmonialadybird species known to exhibit CSP. According to the developed mathematical model of reproductive interference, these behavioural differences should lead to local extinction ofH. yedoensisbecause of reproductive interference byH. axyridis. This prediction is consistent with field observations thatH. axyridisuses various food sources and habitats whereasH. yedoensisis confined to a less preferred prey item and a pine tree habitat. Finally, by a comparative approach, we showed that niche partitioning or parapatric distribution, but not sympatric coexistence in the same habitat, is maintained between species with CSP belonging to a wide range of taxa, including vertebrates and invertebrates living in aquatic or terrestrial environments. Taken together, these results lead us to conclude that reproductive interference generally destabilizes local coexistence even in closely related species that exhibit CSP.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Suzuki Noriyuki ◽  
Naoya Osawa

The range and quality of prey species differ greatly among closely related species of predators. However, the factors responsible for this diversified niche utilization are unclear. This is because the predation and resource competition do not always prevent species coexistence. In this paper, we present evidence in support of reproductive interference as a driver of niche partitioning, focusing on aphidophagous insect. Firstly, we present closely related generalist and specialist species pairs in aphidophagous lacewings to compare the reproductive interference hypothesis with two other hypotheses that have been proposed to explain niche partitioning in lacewings and sympatric speciation through host race formation and sexual selection. Secondly, we present a case study that shows how reproductive interference can drive niche partitioning in sibling ladybird species. Thirdly, we show that many ladybird genera include species inhabiting the same region but having different food and habitat preferences, raising the possibility that reproductive interference might occur in these groups. Finally, we show that intraguild predation cannot always explain the niche partitioning in aphidophagous insects including hoverflies and parasitoids. On the basis of the evidence presented, we urge that future studies investigating predator communities should take account of the role of reproductive interference.


2020 ◽  
Vol 17 (10) ◽  
pp. 229-240
Author(s):  
Weijin Jiang ◽  
Sijian Lv ◽  
Yirong Jiang ◽  
Jiahui Chen ◽  
Fang Ye ◽  
...  

Author(s):  
Michael Laver ◽  
Ernest Sergenti

This chapter extends the survival-of-the-fittest evolutionary environment to consider the possibility that new political parties, when they first come into existence, do not pick decision rules at random but instead choose rules that have a track record of past success. This is done by adding replicator-mutator dynamics to the model, according to which the probability that each rule is selected by a new party is an evolving but noisy function of that rule's past performance. Estimating characteristic outputs when this type of positive feedback enters the dynamic model creates new methodological challenges. The simulation results show that it is very rare for one decision rule to drive out all others over the long run. While the diversity of decision rules used by party leaders is drastically reduced with such positive feedback in the party system, and while some particular decision rule is typically prominent over a certain period of time, party systems in which party leaders use different decision rules are sustained over substantial periods.


Sign in / Sign up

Export Citation Format

Share Document