Supplementation of the maternal diet during pregnancy with chocolate and fructose interacts with the high-fat diet of the young to facilitate the onset of metabolic disorders in rat offspring

2013 ◽  
Vol 40 (9) ◽  
pp. 652-661 ◽  
Author(s):  
Zhi-Yun Zhang ◽  
Yun-Bin Dai ◽  
Hao-Nan Wang ◽  
Ming-Wei Wang
2021 ◽  
Vol 22 (18) ◽  
pp. 9662
Author(s):  
Kinga Gawlińska ◽  
Dawid Gawliński ◽  
Ewelina Kowal-Wiśniewska ◽  
Małgorzata Jarmuż-Szymczak ◽  
Małgorzata Filip

Epidemiological and preclinical studies suggest that maternal obesity increases the risk of autism spectrum disorder (ASD) in offspring. Here, we assessed the effects of exposure to modified maternal diets limited to pregnancy and lactation on brain development and behavior in rat offspring of both sexes. Among the studied diets, a maternal high-fat diet (HFD) disturbed the expression of ASD-related genes (Cacna1d, Nlgn3, and Shank1) and proteins (SHANK1 and TAOK2) in the prefrontal cortex of male offspring during adolescence. In addition, a maternal high-fat diet induced epigenetic changes by increasing cortical global DNA methylation and the expression of miR-423 and miR-494. As well as the molecular changes, behavioral studies have shown male-specific disturbances in social interaction and an increase in repetitive behavior during adolescence. Most of the observed changes disappeared in adulthood. In conclusion, we demonstrated the contribution of a maternal HFD to the predisposition to an ASD-like phenotype in male adolescent offspring, while a protective effect occurred in females.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 2038-P
Author(s):  
YUKI HIGUCHI ◽  
MICHIHIRO HOSOJIMA ◽  
HIDEYUKI KABASAWA ◽  
SHOJI KUWAHARA ◽  
RYOHEI KASEDA ◽  
...  

2016 ◽  
Vol 60 (11) ◽  
pp. 2493-2504 ◽  
Author(s):  
Lorraine S. Oliveira ◽  
Luana L. Souza ◽  
Aline F. P. Souza ◽  
Aline Cordeiro ◽  
George E. G. Kluck ◽  
...  

2021 ◽  
Author(s):  
Qi Guan ◽  
Xinwen Ding ◽  
Lingyue Zhong ◽  
Chuang Zhu ◽  
Pan Nie ◽  
...  

Long term high-fat diet (HF) can cause metabolic disorders, which might induce fatty liver. Fermented whole cereal food exhibit healthy potential due to their unique phytochemical composition and probiotics. In...


2021 ◽  
Author(s):  
Xiaodan Lu ◽  
Rongbin Zhong ◽  
Ling Hu ◽  
Luyao Huang ◽  
Lijiao Chen ◽  
...  

Abstract Large yellow croaker roe phospholipids (LYCRPLs) has great nutritional value because of containing rich docosahexaenoic acid (DHA), which is a kind of n-3 polyunsaturated fatty acids (n-3 PUFAs). In...


2021 ◽  
Vol 22 (14) ◽  
pp. 7551
Author(s):  
Sven H. Rouschop ◽  
Samantha J. Snow ◽  
Urmila P. Kodavanti ◽  
Marie-José Drittij ◽  
Lou M. Maas ◽  
...  

Previous research has shown that a perinatal obesogenic, high-fat diet (HFD) is able to exacerbate ozone-induced adverse effects on lung function, injury, and inflammation in offspring, and it has been suggested that mitochondrial dysfunction is implicated herein. The aim of this study was to investigate whether a perinatal obesogenic HFD affects ozone-induced changes in offspring pulmonary oxidant status and the molecular control of mitochondrial function. For this purpose, female Long-Evans rats were fed a control diet or HFD before and during gestation, and during lactation, after which the offspring were acutely exposed to filtered air or ozone at a young-adult age (forty days). Directly following this exposure, the offspring lungs were examined for markers related to oxidative stress; oxidative phosphorylation; and mitochondrial fusion, fission, biogenesis, and mitophagy. Acute ozone exposure significantly increased pulmonary oxidant status and upregulated the molecular machinery that controls receptor-mediated mitophagy. In female offspring, a perinatal HFD exacerbated these responses, whereas in male offspring, responses were similar for both diet groups. The expression of the genes and proteins involved in oxidative phosphorylation and mitochondrial biogenesis, fusion, and fission was not affected by ozone exposure or perinatal HFD. These findings suggest that a perinatal HFD influences ozone-induced responses on pulmonary oxidant status and the molecular control of mitophagy in female rat offspring.


2016 ◽  
Vol 50 (3) ◽  
pp. 314-327 ◽  
Author(s):  
Bin Feng ◽  
Ran Meng ◽  
Bin Huang ◽  
Shanmei Shen ◽  
Yan Bi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document