scholarly journals Klotho inhibits H 2 O 2 ‐induced oxidative stress and apoptosis in periodontal ligament stem cells by regulating UCP2 expression

Author(s):  
Lilei Zhu ◽  
Hui Xie ◽  
Qingqing Liu ◽  
Fei Ma ◽  
Hao Wu
2020 ◽  
Author(s):  
Lilei Zhu ◽  
Hui Xie ◽  
Qingqing Liu ◽  
Fei Ma ◽  
Hao Wu

Abstract Background Periodontitis, known as a human chronic inflammatory disease, has affected the life of millions of individuals. Known risk factors such as metabolic disease and oxidative stress have been reported to be closely associated with the initiation or development of periodontitis. However, the etiology of periodontitis remains unclear. Klotho, a single-pass transmembrane protein, has been widely reported to modulate cellular processes in various diseases. However, the role of Klotho in periodontitis is unknown.Results In this study, we designed and conducted a series of experiments to evaluate the role of Klotho in chronic periodontitis. Our experimental results showed that Klotho was downregulated in the gingival tissues, gingival crevicular fluid (GCF), and periodontal ligament stem cells (PDLSCs) of chronic periodontitis patients. Besides, Klotho upregulated the production of uncoupling protein 2 (UCP2) in H2O2-treated PDLSCs. In function, Klotho inhibited H2O2-induced oxidative stress and cellular apoptosis in PDLSCs. Moreover, the rescue assay suggested that UCP2 knock-down suppressed the effects of Klotho on H2O2-induced oxidative stress and apoptosis in PDLSCs.Conclusions In conclusion, we found that Klotho inhibits H2O2-induced oxidative stress and apoptosis in PDLSCs by regulating UCP2 expression. This novel discovery may provide a potential target for chronic periodontitis treatment.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Huan Chen ◽  
Xiaojun Huang ◽  
Chuanqiang Fu ◽  
Xiayi Wu ◽  
Yingying Peng ◽  
...  

Human periodontal ligament stem cells (hPDLSCs) are a favourable source for tissue engineering, but oxidative stress conditions during cell culture and transplantation could affect stem cell viability and stemness, leading to failed regeneration. The aim of this study was to evaluate the antioxidant and protective effects of Klotho, an antiageing protein, against cell damage and the loss of osteogenesis in hPDLSCs in H2O2-induced oxidative environments. H2O2 was used as an exogenous reactive oxygen species (ROS) to induce oxidative stress. Recombinant human Klotho protein was administered before H2O2 treatment. Multitechniques were used to assess antioxidant activity, cell damage, and osteogenic ability of hPDLSCs in oxidative stress and the effects of Klotho on hPDLSCs. Mitochondrial function was analyzed by an electron microscopy scan of cellular structure, mitochondrial DNA copy number, and cellular oxygen consumption rate (OCR). Furthermore, we explored the pathway by which Klotho may function to regulate the antioxidant system. We found that pretreatment with recombinant human Klotho protein could enhance SOD activity and reduce intracellular oxidative stress levels. Klotho reduced H2O2-induced cellular damage and eventually maintained the osteogenic differentiation potential of hPDLSCs. Notably, Klotho promoted mitochondrial function and activated antioxidants by negatively regulating the PI3K/AKT/FoxO1 pathway. The findings suggest that Klotho protein enhanced the antioxidative ability of hPDLSCs and protected stem cell viability and stemness from H2O2-induced oxidative stress by restoring mitochondrial functions and the antioxidant system.


2021 ◽  
Vol 11 (6) ◽  
pp. 528
Author(s):  
Spoorthi Ravi Banavar ◽  
Swati Yeshwant Rawal ◽  
Shaju Jacob Pulikkotil ◽  
Umer Daood ◽  
Ian C. Paterson ◽  
...  

Background: The effects of lipopolysaccharide (LPS) on cell proliferation and osteogenic potential (OP) of MSCs have been frequently studied. Objective: to compare the effects of LPS on periodontal-ligament-derived mesenchymal stem cells (PDLSCs) in monolayer and 3D culture. Methods: The PDLSCs were colorimetrically assessed for proliferation and osteogenic potential (OP) after LPS treatment. The 3D cells were manually prepared by scratching and allowing them to clump up. The clumps (C-MSCs) were treated with LPS and assessed for Adenosine triphosphate (ATP) and OP. Raman spectroscopy was used to analyze calcium salts, DNA, and proline/hydroxyproline. Multiplexed ELISA was performed to assess LPS induced local inflammation. Results: The proliferation of PDLSCs decreased with LPS. On Day 28, LPS-treated cells showed a reduction in their OP. C-MSCs with LPS did not show a decrease in ATP production. Principal bands identified in Raman analysis were the P–O bond at 960 cm−1 of the mineral component, 785 cm−1, and 855 cm−1 showing qualitative changes in OP, proliferation, and proline/hydroxyproline content, respectively. ELISA confirmed increased levels of IL-6 and IL-8 but with the absence of TNF-α and IL-1β secretion. Conclusions: These observations demonstrate that C-MSCs are more resistant to the effects of LPS than cells in monolayer cell culture. Though LPS stimulation of C-MSCs creates an early pro-inflammatory milieu by secreting IL-6 and IL-8, PDLSCs possess inactivated TNF promoter and an ineffective caspase-1 activating process.


Sign in / Sign up

Export Citation Format

Share Document