Effects of rutin on the oxidative stress, proliferation and osteogenic differentiation of periodontal ligament stem cells in LPS-induced inflammatory environment and the underlying mechanism

2020 ◽  
Vol 51 (2) ◽  
pp. 161-171
Author(s):  
Bin Zhao ◽  
Wenjing Zhang ◽  
Yixuan Xiong ◽  
Yunpeng Zhang ◽  
Dongjiao Zhang ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Lihua Yin ◽  
Wenxiao Cheng ◽  
Zishun Qin ◽  
Hongdou Yu ◽  
Zhanhai Yu ◽  
...  

This study is to explore the osteogenesis potential of the human periodontal ligament stem cells (hPDLSCs) induced by naringin in vitro and in vitro. The results confirmed that 1 μM naringin performs the best effect and a collection of bone-related genes (RUNX2,COL1A2, OPN, and OCN) had significantly higher expression levels compared to the control group. Furthermore, a typical trabecular structure was observed in vivo, surrounded by a large amount of osteoblasts. These results demonstrated that naringin, at a concentration of 1 μM, can efficiently promote the proliferation and differentiation of hPDLSCs both in vitro and in vivo.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Tingting Meng ◽  
Ying Zhou ◽  
Jingkun Li ◽  
Meilin Hu ◽  
Xiaomeng Li ◽  
...  

Background and Objective. This study investigated the effects and underlying mechanisms of azithromycin (AZM) treatment on the osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) after their stimulation with TNF-α in vitro. Methods. PDLSCs were isolated from periodontal ligaments from extracted teeth, and MTS assay was used to evaluate whether AZM and TNF-α had toxic effects on PDLSCs viability and proliferation. After stimulating PDLSCs with TNF-α and AZM, we analyzed alkaline phosphatase staining, alkaline phosphatase activity, and alizarin red staining to detect osteogenic differentiation. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis was performed to detect the mRNA expression of osteogenic-related genes, including RUNX2, OCN, and BSP. Western blotting was used to measure the NF-κB signaling pathway proteins p65, phosphorylated p65, IκB-α, phosphorylated IκB-α, and β-catenin as well as the apoptosis-related proteins caspase-8 and caspase-3. Annexin V assay was used to detect PDLSCs apoptosis. Results. TNF-α stimulation of PDLSCs decreased alkaline phosphatase and alizarin red staining, alkaline phosphatase activity, and mRNA expression of RUNX2, OCN, and BSP in osteogenic-conditioned medium. AZM enhanced the osteogenic differentiation of PDLSCs that were stimulated with TNF-α. Western blot analysis showed that β-catenin, phosphorated p65, and phosphorylated IκB-α protein expression decreased in PDLSCs treated with AZM. In addition, pretreatment of PDLSCs with AZM (10 μg/ml, 20 μg/ml) prevented TNF-α-induced apoptosis by decreasing caspase-8 and caspase-3 expression. Conclusions. Our results showed that AZM promotes PDLSCs osteogenic differentiation in an inflammatory microenvironment by inhibiting the WNT and NF-κB signaling pathways and by suppressing TNF-α-induced apoptosis. This suggests that AZM has potential as a clinical therapeutic for periodontitis.


2021 ◽  
Author(s):  
Feng Zhou ◽  
Jia Guo ◽  
Fang Wang ◽  
Wanmin Zhao ◽  
Xiaoning He ◽  
...  

Abstract Background: Periodontal ligament stem cells (PDLSCs) aggregate is still limited in clinical application for lack of angiogenesis. This study aimed to investigate the effects and underlying mechanism of exosomes derived from stem cells from human exfoliated deciduous teeth (SHED) aggregate (SA-Exo) on the aggregate formation and angiogenic properties of PDLSCs.Methods: SA-Exo were isolated by ultracentrifugation. The effect of SA-Exo on the aggregate formation and angiogenic differentiation of PDLSCs were evaluated by investigating extracellular matrix (ECM) deposition and tube formation assay. MicroRNA (miRNA) sequencing was employed to screen different miRNA expression. The effect of targeting miRNA on ECM deposition and angiogenesis of PDLSCs aggregate was investigated after overexpression and inhibition of miRNA. Periodontal bone defect rat models were established to evaluate the effect of the PDLSCs aggregate and SA-Exo combination on periodontal bone regeneration. Results: SA-Exo could significantly enhance the ECM deposition and angiogenic ability of PDLSCs. The expression of ECM-associated proteins (COL-I, integrinβ1, and fibronectin), angiogenesis-related proteins (PDGF, ANG, TGFβRII), and related pathway (p-SMAD1/5 and p-SMAD2/3) were upregulated in PDLSCs aggregate with SA-Exo. Mechanistically, miR-222 was found relatively abundant in SA-Exo, which promoted ECM deposition and angiogenesis of PDLSCs. In vivo experiment further validated that combinational use of PDLSCs aggregate and SA-Exo promote more bone formation and neovascularization in rat’s periodontal bone defect.Conclusions: SA-Exo-shuttled miR-222 contributes to PDLSCs aggregate engineering by promoting aggregate formation and angiogenesis, which might through activate the TGF-β/SMAD signaling pathway.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Fulan Wei ◽  
Shuangyan Yang ◽  
Qingyuan Guo ◽  
Xin Zhang ◽  
Dapeng Ren ◽  
...  

2019 ◽  
Vol 7 (5) ◽  
pp. 1973-1983 ◽  
Author(s):  
Qianmin Ou ◽  
Yingling Miao ◽  
Fanqiao Yang ◽  
Xuefeng Lin ◽  
Li-Ming Zhang ◽  
...  

In bone tissue engineering, it is important for biomaterials to promote the osteogenic differentiation of stem cells to achieve tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document