scholarly journals Recombinant Klotho Protects Human Periodontal Ligament Stem Cells by Regulating Mitochondrial Function and the Antioxidant System during H2O2-Induced Oxidative Stress

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Huan Chen ◽  
Xiaojun Huang ◽  
Chuanqiang Fu ◽  
Xiayi Wu ◽  
Yingying Peng ◽  
...  

Human periodontal ligament stem cells (hPDLSCs) are a favourable source for tissue engineering, but oxidative stress conditions during cell culture and transplantation could affect stem cell viability and stemness, leading to failed regeneration. The aim of this study was to evaluate the antioxidant and protective effects of Klotho, an antiageing protein, against cell damage and the loss of osteogenesis in hPDLSCs in H2O2-induced oxidative environments. H2O2 was used as an exogenous reactive oxygen species (ROS) to induce oxidative stress. Recombinant human Klotho protein was administered before H2O2 treatment. Multitechniques were used to assess antioxidant activity, cell damage, and osteogenic ability of hPDLSCs in oxidative stress and the effects of Klotho on hPDLSCs. Mitochondrial function was analyzed by an electron microscopy scan of cellular structure, mitochondrial DNA copy number, and cellular oxygen consumption rate (OCR). Furthermore, we explored the pathway by which Klotho may function to regulate the antioxidant system. We found that pretreatment with recombinant human Klotho protein could enhance SOD activity and reduce intracellular oxidative stress levels. Klotho reduced H2O2-induced cellular damage and eventually maintained the osteogenic differentiation potential of hPDLSCs. Notably, Klotho promoted mitochondrial function and activated antioxidants by negatively regulating the PI3K/AKT/FoxO1 pathway. The findings suggest that Klotho protein enhanced the antioxidative ability of hPDLSCs and protected stem cell viability and stemness from H2O2-induced oxidative stress by restoring mitochondrial functions and the antioxidant system.

Author(s):  
Orsolya Láng ◽  
Krisztina S. Nagy ◽  
Julia Láng ◽  
Katalin Perczel-Kovách ◽  
Anna Herczegh ◽  
...  

Abstract Objectives Periodontal ligament stem cells (PDLSCs) have an underlined significance as their high proliferative capacity and multipotent differentiation provide an important therapeutic potential. The integrity of these cells is frequently disturbed by the routinely used irrigative compounds applied as periodontal or endodontic disinfectants (e.g., hydrogen peroxide (H2O2) and chlorhexidine (CHX)). Our objectives were (i) to monitor the cytotoxic effect of a novel dental irrigative compound, chlorine dioxide (ClO2), compared to two traditional agents (H2O2, CHX) on PDLSCs and (ii) to test whether the aging factor of PDLSC cultures determines cellular responsiveness to the chemicals tested. Methods Impedimetry (concentration-response study), WST-1 assays (WST = water soluble tetrazolium salt), and morphology analysis were performed to measure changes in cell viability induced by the 3 disinfectants; immunocytochemistry of stem cell markers (STRO-1, CD90, and CD105) measured the induced mesenchymal characteristics. Results Cell viability experiments demonstrated that the application of ClO2 does not lead to a significant decrease in viability of PLDSCs in concentrations used to kill microbes. On the contrary, traditional irrigants, H2O2, and CHX are highly toxic on PDLSCs. Aging of PLDSC cultures (passages 3 vs. 7) has characteristic effects on their responsiveness to these agents as the increased expression of mesenchymal stem cell markers turns to decreased. Conclusions and clinical relevance While the active ingredients of mouthwash (H2O2, CHX) applied in endodontic or periodontitis management have a serious toxic effect on PDLSCs, the novel hyperpure ClO2 is less toxic providing an environment favoring dental structure regenerations during disinfectant interventions.


2020 ◽  
Vol 10 (1) ◽  
pp. 325 ◽  
Author(s):  
Francisco Javier Rodríguez-Lozano ◽  
Sergio López-García ◽  
David García-Bernal ◽  
Miguel R. Pecci-Lloret ◽  
Julia Guerrero-Gironés ◽  
...  

New bioactive materials have been developed for retrograde root filling. These materials come into contact with vital tissues and facilitate biomineralization and apical repair. The objective of this study was to evaluate the cytocompatibility and bioactivity of two bioactive cements, Bio-C Repair (Angelus, Londrina, Pr, Brazil) and TotalFill BC RRM putty (FGK, Dentaire SA, La-Chaux-de-fonds, Switzerland). The biological properties in human periodontal ligament stem cells (hPDLSCs) that were exposed to Bio-C Repair and TotalFill BC RRM putty were studied. Cell viability, migration, and cell adhesion were analyzed. Moreover, qPCR and mineralization assay were performed to evaluate the bioactivity potential of these cements. The results were statistically analyzed using ANOVA and the Tukey test (p < 0.05). It was observed that cell viability and cell migration in Bio-C Repair and TotalFill BC RRM putty were similar to the control without statistically significant differences, except at 72 h when TotalFill BC RRM putty was slightly lower (p < 0.05). Excellent cell adhesion and morphology were observed with both Bio-C Repair and TotalFill BC RRM putty. Both cements promoted the osteo- and cementogenic differentiation of hPDLSCs. These results suggest that Bio-C Repair and TotalFill BC RRM putty are biologically appropriate materials to be used as retrograde obturation material.


2020 ◽  
Author(s):  
Lilei Zhu ◽  
Hui Xie ◽  
Qingqing Liu ◽  
Fei Ma ◽  
Hao Wu

Abstract Background Periodontitis, known as a human chronic inflammatory disease, has affected the life of millions of individuals. Known risk factors such as metabolic disease and oxidative stress have been reported to be closely associated with the initiation or development of periodontitis. However, the etiology of periodontitis remains unclear. Klotho, a single-pass transmembrane protein, has been widely reported to modulate cellular processes in various diseases. However, the role of Klotho in periodontitis is unknown.Results In this study, we designed and conducted a series of experiments to evaluate the role of Klotho in chronic periodontitis. Our experimental results showed that Klotho was downregulated in the gingival tissues, gingival crevicular fluid (GCF), and periodontal ligament stem cells (PDLSCs) of chronic periodontitis patients. Besides, Klotho upregulated the production of uncoupling protein 2 (UCP2) in H2O2-treated PDLSCs. In function, Klotho inhibited H2O2-induced oxidative stress and cellular apoptosis in PDLSCs. Moreover, the rescue assay suggested that UCP2 knock-down suppressed the effects of Klotho on H2O2-induced oxidative stress and apoptosis in PDLSCs.Conclusions In conclusion, we found that Klotho inhibits H2O2-induced oxidative stress and apoptosis in PDLSCs by regulating UCP2 expression. This novel discovery may provide a potential target for chronic periodontitis treatment.


2005 ◽  
Vol 84 (10) ◽  
pp. 907-912 ◽  
Author(s):  
B.-M. Seo ◽  
M. Miura ◽  
W. Sonoyama ◽  
C. Coppe ◽  
R. Stanyon ◽  
...  

Human post-natal stem cells possess a great potential to be utilized in stem-cell-mediated clinical therapies and tissue engineering. It is not known whether cryopreserved human tissues contain functional post-natal stem cells. In this study, we utilized human periodontal ligament to test the hypothesis that cryopreserved human periodontal ligament contains retrievable post-natal stem cells. These cryopreserved periodontal ligament stem cells maintained normal periodontal ligament stem cell characteristics, including expression of the mesenchymal stem cell surface molecule STRO-1, single-colony-strain generation, multipotential differentiation, cementum/periodontal-ligament-like tissue regeneration, and a normal diploid karyotype. Collectively, this study provides valuable evidence demonstrating a practical approach to the preservation of solid-frozen human tissues for subsequent post-natal stem cell isolation and tissue regeneration. The present study demonstrates that human post-natal stem cells can be recovered from cryopreserved human periodontal ligament, thereby providing a practical clinical approach for the utilization of frozen tissues for stem cell isolation.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5242
Author(s):  
Hanseul Oh ◽  
Egan Kim ◽  
Sukjoon Lee ◽  
Soyeon Park ◽  
Dongzi Chen ◽  
...  

The aim of this study was to evaluate the biocompatibility of calcium silicate-based sealers (CeraSeal and EndoSeal TCS) and epoxy resin-based sealer (AH-Plus) in terms of cell viability, inflammatory response, expression of mesenchymal phenotype, osteogenic potential, cell attachment, and morphology, of human periodontal ligament stem cells (hPDLSCs). hPDLSCs were acquired from the premolars (n = 4) of four subjects, whose ages extended from 16 to 24 years of age. Flow cytometry analysis showed stemness of hPDLSCs was maintained in all materials. In cell viability test, AH-Plus showed the lowest cell viability, and CeraSeal showed significantly higher cell viability than others. In ELISA test, AH-Plus showed higher expression of IL-6 and IL-8 than calcium silicate-based sealers. In an osteogenic potential test, AH-Plus showed a lower expression level than other material; however, EndoSeal TCS showed a better expression level than others. All experiments were repeated at least three times per cell line. Scanning electronic microscopy studies showed low degree of cell proliferation on AH-Plus, and high degree of cell proliferation on calcium silicate-based sealers. In this study, calcium silicate-based sealers appear to be more biocompatible and less cytotoxic than epoxy-resin based sealers.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Carlos Bueno ◽  
Marta Martínez-Morga ◽  
Salvador Martínez

AbstractUnderstanding the sequence of events from undifferentiated stem cells to neuron is not only important for the basic knowledge of stem cell biology, but also for therapeutic applications. In this study we examined the sequence of biological events during neural differentiation of human periodontal ligament stem cells (hPDLSCs). Here, we show that hPDLSCs-derived neural-like cells display a sequence of morphologic development highly similar to those reported before in primary neuronal cultures derived from rodent brains. We observed that cell proliferation is not present through neurogenesis from hPDLSCs. Futhermore, we may have discovered micronuclei movement and transient cell nuclei lobulation coincident to in vitro neurogenesis. Morphological analysis also reveals that neurogenic niches in the adult mouse brain contain cells with nuclear shapes highly similar to those observed during in vitro neurogenesis from hPDLSCs. Our results provide additional evidence that it is possible to differentiate hPDLSCs to neuron-like cells and suggest the possibility that the sequence of events from stem cell to neuron does not necessarily requires cell division from stem cell.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Francesca Diomede ◽  
Thangavelu Soundara Rajan ◽  
Marco D’Aurora ◽  
Placido Bramanti ◽  
Ilaria Merciaro ◽  
...  

Multiple sclerosis (MS) is the most prevalent and progressive autoimmune disease that affects the central nervous system, and currently, no drug is available for the treatment. Stem cell therapy has received substantial attention in MS treatment. Recently, we demonstrated the immunosuppressive effects of mesenchymal stem cells derived from neural crest-originated human periodontal ligament tissue (hPDLSCs) in an in vivo model of MS. In the present study, we comparatively investigated the stemness properties of hPDLSCs derived from healthy donors and relapsing-remitting MS patients. Stem cell marker expression, cell proliferation, and differentiation capacity were studied. We found that both donor- and MS patient-derived hPDLSCs at early passage 2 showed similar expression of surface antigen markers and cell proliferation rate. Significant level of osteogenic, adipogenic, chondrogenic, and neurogenic differentiation capacities was observed in both donor- and MS patient-derived hPDLSCs. Interestingly, these cells maintained the stemness properties even at late passage 15. Senescence markers p16 and p21 expression was considerably enhanced in passage 15. Our results propose that hPDLSCs may serve as simple and potential autologous stem cell niche, which may help in personalized stem cell therapy for MS patients.


Sign in / Sign up

Export Citation Format

Share Document