Curcumin reduces apoptosis and promotes osteogenesis of human periodontal ligament stem cells under oxidative stress in vitro and in vivo

Life Sciences ◽  
2021 ◽  
Vol 270 ◽  
pp. 119125
Author(s):  
Lingping Tan ◽  
Zeyuan Cao ◽  
Huan Chen ◽  
Yunyi Xie ◽  
Le Yu ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Lihua Yin ◽  
Wenxiao Cheng ◽  
Zishun Qin ◽  
Hongdou Yu ◽  
Zhanhai Yu ◽  
...  

This study is to explore the osteogenesis potential of the human periodontal ligament stem cells (hPDLSCs) induced by naringin in vitro and in vitro. The results confirmed that 1 μM naringin performs the best effect and a collection of bone-related genes (RUNX2,COL1A2, OPN, and OCN) had significantly higher expression levels compared to the control group. Furthermore, a typical trabecular structure was observed in vivo, surrounded by a large amount of osteoblasts. These results demonstrated that naringin, at a concentration of 1 μM, can efficiently promote the proliferation and differentiation of hPDLSCs both in vitro and in vivo.


2015 ◽  
Vol 41 (9) ◽  
pp. 1462-1468 ◽  
Author(s):  
Yoonsun Cha ◽  
Mijeong Jeon ◽  
Hyo-Seol Lee ◽  
Seunghye Kim ◽  
Seong-Oh Kim ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xue Xiong ◽  
Xiao Yang ◽  
Hongwei Dai ◽  
Gang Feng ◽  
Yuanyuan Zhang ◽  
...  

Abstract Background Human periodontal ligament stem cells (hPDLSCs) are one of the most promising types of seed cells in periodontal tissue regeneration. Suitable biomaterials are additional essential components that must cooperate with seed cells for in vivo expansion or in vitro implantation. Extracellular matrix (ECM) derived from mesenchymal stem cells (MSCs) was recently reported to be a promising substrate with which to culture MSCs that could be applied in biomaterial scaffolds or bioink. Human urine-derived stem cells (hUSCs) have several advantages; their collection is non-invasive and easy, and hUSCs are low in cost, potentially making them a suitable and efficient source of ECM. The purpose of this study was to characterize the biological properties of ECM derived from hUSCs (UECM) and evaluate the effects of UECM on hPDLSCs. Methods hPDLSCs grown on ECM derived from hPDLSCs (PECM) and fibronectin-coated tissue culture plastic (TCP) served as control groups. Both hUSCs and hPDLSCs were seeded on TCP and stimulated to produce ECM. After 8 days of stimulation, the samples were decellularized, leaving only ECM. Then, hPDLSCs were seeded onto UECM-, PECM-, and fibronectin-coated TCP and untreated TCP. Results UECM consists of dense bundles of fibers which contain abundant fibronectin. Both UECM and PECM promoted hPDLSC proliferation, attachment, spreading, and differentiation. Between UECM and PECM, UECM enhanced proliferation, osteogenesis, and angiogenesis to a greater extent. Though fibronectin appeared to be the abundant component of UECM, its performance was inferior to that of UECM. Conclusions Our study provides an original perspective on different cell-specific ECMs and suggests UECM as a suitable biomaterial in which to culture hPDLSCs as UECM enhances their biological functions.


2016 ◽  
Vol 366 (2) ◽  
pp. 311-328 ◽  
Author(s):  
Yang Yu ◽  
Chun-Sheng Bi ◽  
Rui-Xin Wu ◽  
Yuan Yin ◽  
Xi-Yu Zhang ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Huaming Huang ◽  
Ruili Yang ◽  
Yan-heng Zhou

Periodontal ligament stem cells (PDLSCs) possess self-renewal, multilineage differentiation, and immunomodulatory properties. They play a crucial role in maintaining periodontal homeostasis and also participated in orthodontic tooth movement (OTM). Various studies have applied controlled mechanical stimulation to PDLSCs and investigated the effects of orthodontic force on PDLSCs. Physical stimuli can regulate the proliferation and differentiation of PDLSCs. During the past decade, a variety of studies has demonstrated that applied forces can activate different signaling pathways in PDLSCs, including MAPK, TGF-β/Smad, and Wnt/β-catenin pathways. Besides, recent advances have highlighted the critical role of orthodontic force in PDLSC fate through mediators, such as IL-11, CTHRC1, miR-21, and H2S. This perspective review critically discusses the PDLSC fate to physical forcein vitroand orthodontic forcein vivo, as well as the underlying molecular mechanism involved in OTM.


2021 ◽  
Vol 11 (8) ◽  
pp. 738
Author(s):  
Melissa D. Mercado-Rubio ◽  
Erick Pérez-Argueta ◽  
Alejandro Zepeda-Pedreguera ◽  
Fernando J. Aguilar-Ayala ◽  
Ricardo Peñaloza-Cuevas ◽  
...  

Dental tissue-derived mesenchymal stem cells (DT-MSCs) are a promising resource for tissue regeneration due to their multilineage potential. Despite accumulating data regarding the biology and differentiation potential of DT-MSCs, few studies have investigated their adipogenic capacity. In this study, we have investigated the mesenchymal features of dental pulp stem cells (DPSCs), as well as the in vitro effects of different adipogenic media on these cells, and compared them to those of periodontal ligament stem cells (PLSCs) and dental follicle stem cells (DFSCs). DFSC, PLSCs, and DPSCs exhibit similar morphology and proliferation capacity, but they differ in their self-renewal ability and expression of stemness markers (e.g OCT4 and c-MYC). Interestingly, DFSCs and PLSCs exhibited more lipid accumulation than DPSCs when induced to adipogenic differentiation. In addition, the mRNA levels of adipogenic markers (PPAR, LPL, and ADIPOQ) were significantly higher in DFSCs and PLSCs than in DPSCs, which could be related to the differences in the adipogenic commitment in those cells. These findings reveal that the adipogenic capacity differ among DT-MSCs, features that might be advantageous to increasing our understanding about the developmental origins and regulation of adipogenic commitment.


Sign in / Sign up

Export Citation Format

Share Document