Root isoflavonoids and hairy root transformation influence key bacterial taxa in the soybean rhizosphere

2017 ◽  
Vol 19 (4) ◽  
pp. 1391-1406 ◽  
Author(s):  
Laura J. White ◽  
Xijin Ge ◽  
Volker S. Brözel ◽  
Senthil Subramanian
1995 ◽  
Vol 43 (1) ◽  
pp. 1-5 ◽  
Author(s):  
H.J. Siefkes-Boer ◽  
M.J. Noonan ◽  
D.W. Bullock ◽  
A.J. Conner

Hairy roots were produced on faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.) plants by inoculation with Agrobacterium root-inducing strains. Examination of 14 plant genotypes and eight Agrobacterium strains in all possible combinations revealed specific strain/genotype interactions. Hairy root size and morphology differed substantially between faba bean and chickpea hairy roots. Sixty percent of chickpea hairy roots were 10–15 mm in length and forty percent, 15–25 mm. All were <1.0 mm in thickness. Sixty-three percent of faba bean hairy roots were 15–25 mm long and thirty-seven percent, 25–40 mm. All faba bean hairy roots were between 1.0 and 1.5 mm in thickness.


2020 ◽  
Vol 18 (11) ◽  
pp. 2201-2209 ◽  
Author(s):  
Nathaniel M. Butler ◽  
Shelley H. Jansky ◽  
Jiming Jiang

BIO-PROTOCOL ◽  
2013 ◽  
Vol 3 (12) ◽  
Author(s):  
Satoru Okamoto ◽  
Emiko Yoro ◽  
Takuya Suzaki ◽  
Masayoshi Kawaguchi

2021 ◽  
Author(s):  
Lili Zhou ◽  
Yali Wang ◽  
Peilin Wang ◽  
Jiamin Wang ◽  
Hongmei Cheng

Abstract Background CRIPSR/Cas9 gene editing has the ability to effectively modify plant genomes. Multiple target sites usually were designed and the effective target sites were selected for editing. However, upland cotton is allotetraploid and is commonly considered as difficult and inefficient to transform. Therefore, it’s important to quickly identify feasibility of the target site. In this study, we use Agrobacterium rhizogenes K599 strain to infect cotton shoot meristem and induce them to grow hairy roots to detect the feasibility of a selected target designed in GhMYB25-like gene. Results We designed a sgRNA within the second exons of GhMYB25-likeA and GhMYB25-likeD and constructed the CRISPR vector. Transient hairy root transformation using A. rhizogenes K599 with four OD600s (0.4, 0.6,0.8, 1.0) was performed in Coker 312 (R15). The results show that A. rhizogenes at OD600 = 0.6–0.8 is the best concentration range for inducing cotton hairy roots. The other three cultivars (TM-1, Lumian 21, Zhongmian 49) were injected using A. rhizogenes K599 with OD600 = 0.6-0.8 and all produced hairy roots. We characterized ten R15 plants with hairy roots and detected different degrees of base deletions and insert at the target site in five R15 plants. Conclusion Overall, our data show A. rhizogenes-mediated transient hairy root transformation offers a rapid and efficient method to detect sgRNA feasibility in cotton.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yuanyuan Cheng ◽  
Xiaoli Wang ◽  
Li Cao ◽  
Jing Ji ◽  
Tengfei Liu ◽  
...  

Abstract Background Agrobacterium-mediated genetic transformation is a widely used and efficient technique for gene functional research in crop breeding and plant biology. While in some plant species, including soybean, genetic transformation is still recalcitrant and time-consuming, hampering the high-throughput functional analysis of soybean genes. Thus we pursue to develop a rapid, simple, and highly efficient hairy root system induced by Agrobacterium rhizogenes (A. rhizogenes) to analyze soybean gene function. Results In this report, a rapid, simple, and highly efficient hairy root transformation system for soybean was described. Only sixteen days were required for the whole workflow and the system was suitable for various soybean genotypes, with an average transformation frequency of 58–64%. Higher transformation frequency was observed when wounded cotyledons from 1-day-germination seeds were inoculated and co-cultivated with A. rhizogenes in 1/2 B5 (Gamborg’ B-5) medium. The addition of herbicide selection to root production medium increased the transformation frequency to 69%. To test the applicability of the hairy root system for gene functional analysis, we evaluated the protein expression and subcellular localization in transformed hairy roots. Transgenic hairy roots exhibited significantly increased GFP fluorescence and appropriate protein subcellular localization. Protein–protein interactions by BiFC (Bimolecular Fluorescent Complimentary) were also explored using the hairy root system. Fluorescence observations showed that protein interactions could be observed in the root cells. Additionally, hairy root transformation allowed soybean target sgRNA screening for CRISPR/Cas9 gene editing. Therefore, the protocol here enables high-throughput functional characterization of candidate genes in soybean. Conclusion A rapid, simple, and highly efficient A. rhizogenes-mediated hairy root transformation system was established for soybean gene functional analysis, including protein expression, subcellular localization, protein–protein interactions and gene editing system evaluation.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 51
Author(s):  
Alexey S. Kiryushkin ◽  
Elena L. Ilina ◽  
Elizaveta D. Guseva ◽  
Katharina Pawlowski ◽  
Kirill N. Demchenko

CRISPR/Cas-mediated genome editing is a powerful tool of plant functional genomics. Hairy root transformation is a rapid and convenient approach for obtaining transgenic roots. When combined, these techniques represent a fast and effective means of studying gene function. In this review, we outline the current state of the art reached by the combination of these approaches over seven years. Additionally, we discuss the origins of different Agrobacterium rhizogenes strains that are widely used for hairy root transformation; the components of CRISPR/Cas vectors, such as the promoters that drive Cas or gRNA expression, the types of Cas nuclease, and selectable and screenable markers; and the application of CRISPR/Cas genome editing in hairy roots. The modification of the already known vector pKSE401 with the addition of the rice translational enhancer OsMac3 and the gene encoding the fluorescent protein DsRed1 is also described.


2022 ◽  
Vol 12 ◽  
Author(s):  
Vy Nguyen ◽  
Iain R. Searle

Common vetch (Vicia sativa) is a multi-purpose legume widely used in pasture and crop rotation systems. Vetch seeds have desirable nutritional characteristics and are often used to feed ruminant animals. Although transcriptomes are available for vetch, problems with genetic transformation and plant regeneration hinder functional gene studies in this legume species. Therefore, the aim of this study was to develop a simple, efficient and rapid hairy root transformation system for common vetch to facilitate functional gene analysis. At first, we infected the hypocotyls of 5-day-old in vitro or in vivo, soil-grown seedlings with Rhizobium rhizogenes K599 using a stabbing method and produced transgenic hairy roots after 24 days at 19 and 50% efficiency, respectively. We later improved the hairy root transformation in vitro by infecting different explants (seedling, hypocotyl-epicotyl, and shoot) with R. rhizogenes. We observed hairy root formation at the highest efficiency in shoot and hypocotyl-epicotyl explants with 100 and 93% efficiency, respectively. In both cases, an average of four hairy roots per explant were obtained, and about 73 and 91% of hairy roots from shoot and hypocotyl-epicotyl, respectively, showed stable expression of a co-transformed marker β-glucuronidase (GUS). In summary, we developed a rapid, highly efficient, hairy root transformation method by using R. rhizogenes on vetch explants, which could facilitate functional gene analysis in common vetch.


1987 ◽  
Vol 73 (4) ◽  
pp. 523-530 ◽  
Author(s):  
L. Spanò ◽  
D. Mariotti ◽  
M. Pezzotti ◽  
F. Damiani ◽  
S. Arcioni

Sign in / Sign up

Export Citation Format

Share Document