scholarly journals Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community

2017 ◽  
Vol 19 (12) ◽  
pp. 4993-5009 ◽  
Author(s):  
Anyi Hu ◽  
Feng Ju ◽  
Liyuan Hou ◽  
Jiangwei Li ◽  
Xiaoyong Yang ◽  
...  
2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Gemma Henderson ◽  
◽  
Faith Cox ◽  
Siva Ganesh ◽  
Arjan Jonker ◽  
...  

Abstract Ruminant livestock are important sources of human food and global greenhouse gas emissions. Feed degradation and methane formation by ruminants rely on metabolic interactions between rumen microbes and affect ruminant productivity. Rumen and camelid foregut microbial community composition was determined in 742 samples from 32 animal species and 35 countries, to estimate if this was influenced by diet, host species, or geography. Similar bacteria and archaea dominated in nearly all samples, while protozoal communities were more variable. The dominant bacteria are poorly characterised, but the methanogenic archaea are better known and highly conserved across the world. This universality and limited diversity could make it possible to mitigate methane emissions by developing strategies that target the few dominant methanogens. Differences in microbial community compositions were predominantly attributable to diet, with the host being less influential. There were few strong co-occurrence patterns between microbes, suggesting that major metabolic interactions are non-selective rather than specific.


2019 ◽  
Vol 1 (1) ◽  
pp. 112-128 ◽  
Author(s):  
Jiwen Liu ◽  
Zhe Meng ◽  
Xiaoyue Liu ◽  
Xiao-Hua Zhang

Abstract Microorganisms play crucial roles in maintaining ecosystem stability. The last two decades have witnessed an upsurge in studies on marine microbial community composition using high-throughput sequencing methods. Extensive mining of the compositional data has provided exciting new insights into marine microbial ecology from a number of perspectives. Both deterministic and stochastic processes contribute to microbial community assembly but their relative importance in structuring subcommunities, that are categorized by traits such as abundance, functional type and activity, differs. Through correlation-based network analysis, significant progress has been made in unraveling microbial co-occurrence patterns and dynamics in response to environmental changes. Prediction of ecosystem functioning, based on microbial data, is receiving increasing attention, as closely related microbes often share similar ecological traits and microbial diversity often exhibits significant correlations to ecosystem functioning. The ecosystem functioning is likely executed not by the whole community, but rather by an active fraction of a community, which can be inferred from the marker gene transcription level of community members. Furthermore, the huge amount of microbial community data has significantly expanded the tree of life and illuminated microbial phylogenetic divergence and evolutionary history. This review summarizes important findings in microbial assembly, interaction, functioning, activity and diversification, highlighting the interacting roles of different aspects, derived from community compositional data.


2019 ◽  
Vol 20 (9) ◽  
pp. 2130 ◽  
Author(s):  
Fang Liu ◽  
Zhaojie Li ◽  
Xiong Wang ◽  
Changhu Xue ◽  
Qingjuan Tang ◽  
...  

Detecting microbial interactions is essential to the understanding of the structure and function of the gut microbiome. In this study, microbial co-occurrence patterns were inferred using a random matrix theory based approach in the gut microbiome of mice in response to chondroitin sulfate disaccharide (CSD) under healthy and stressed conditions. The exercise stress disrupted the network composition and microbial co-occurrence patterns. Thirty-four Operational Taxonomic Units (OTU) were identified as module hubs and connectors, likely acting as generalists in the microbial community. Mucispirillum schaedleri acted as a connector in the stressed network in response to CSD supplement and may play a key role in bridging intimate interactions between the host and its microbiome. Several modules correlated with physiological parameters were detected. For example, Modules M02 (under stress) and S05 (stress + CSD) were strongly correlated with blood urea nitrogen levels (r = 0.90 and −0.75, respectively). A positive correlation between node connectivity of the OTUs assigned to Proteobacteria with superoxide dismutase activities under stress (r = 0.57, p < 0.05) provided further evidence that Proteobacteria can be developed as a potential pathological marker. Our findings provided novel insights into gut microbial interactions and may facilitate future endeavor in microbial community engineering.


2019 ◽  
Author(s):  
Richard Villemur ◽  
Geneviève Payette ◽  
Valérie Geoffroy ◽  
Florian Mauffrey ◽  
Christine Martineau

AbstractBackgroundThe biofilm of a continuous, methanol-fed, fluidized denitrification system that treated a marine effluent at the Montreal Biodome is composed of a multi-species microbial community, among whichHyphomicrobium nitrativoransNL23 andMethylophaga nitratireducenticrescensJAM1 are the principal bacteria involved in the denitrifying activities. To assess its resilience to environmental changes, the biofilm taken from the denitrification system was cultured at laboratory scale in artificial seawater (ASW) under anoxic conditions and exposed to a range of specific physico-chemical parameters. We previously showed that the seawater formulation and the NaCl concentrations had a strong impact on theH. nitrativoransNL23 population, with its displacement by a new denitrifier,M. nitratireducenticrescensGP59. Here, we report the impact of these cultures conditions on the dynamics of the overall microbial community of the denitrifying biofilm.MethodsThe original biofilm (OB) taken from the denitrification system was acclimated for five weeks in ASW under anoxic conditions with a range of NaCl concentrations, and with four combinations of nitrate concentrations and temperatures. The OB was also acclimated to the commercial Instant Ocean seawater medium (IO). The bacterial diversity of the biofilm cultures and the OB was determined by 16S ribosomal RNA amplicon metagenome sequencing. Culture-dependent approach was used to isolate other denitrifying bacteria from the biofilm cultures. The metatranscriptomes of some of the biofilm cultures were derived, along with the transcriptomes of planktonic pure cultures ofH. nitrativoransNL23 andM. nitratireducentricrescensGP59 cultivated under denitrifying conditions.ResultsThe 16S metagenomic data revealed very high proportions ofM. nitratireducenticrescensin the biofilm cultures.H. nitrativoransNL23 was found in high proportion in the OB, both was absent in the biofilm cultures with 2.75% NaCl in the ASW medium. It was found however in low proportions in the biofilm cultures with 0 to 1% NaCl in the ASW medium and in the IO biofilm cultures. Emergence ofMarinicellaspp. occurred in these biofilm cultures. Denitrifying bacterial isolates affiliated toMarinobacterspp. andParacoccusspp. were isolated. Up regulation of the denitrification genes in strains GP59 and NL23 occurred in the biofilm cultures compared to the planktonic pure cultures. Denitrifying bacteria affiliated to theStappiaspp. were metabolically active in the biofilm cultures.ConclusionsThese results illustrate the dynamics of the microbial community in the denitrifying biofilm cultures in adapting to different environmental conditions. The NaCl concentration is an important factor affecting the microbial community in the biofilm cultures. Up regulation of the denitrification genes in strain GP59 and strain NL23 in the biofilm cultures suggests different mechanisms of regulation of the denitrification pathway in the biofilm compared to the planktonic pure cultures. Other denitrifying heterotrophic bacteria are present in low proportions in the biofilm, suggesting that the biofilm has the potential to adapt to heterotrophic, non-methylotrophic environments.


Sign in / Sign up

Export Citation Format

Share Document