Endophytic bacterial community of Stellera chamaejasme L. and its role in improving host plants’ competitiveness in grasslands

Author(s):  
Yuejuan Jiang ◽  
Qiaohong Li ◽  
Wenqin Mao ◽  
Wengting Tang ◽  
James F. White ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephanie E. Hereira-Pacheco ◽  
Yendi E. Navarro-Noya ◽  
Luc Dendooven

AbstractRhizosphere and root endophytic bacteria are crucial for plant development, but the question remains if their composition is similar and how environmental conditions, such as water content, affect their resemblance. Ricinus communis L., a highly drought resistant plant, was used to study how varying soil water content affected the bacterial community in uncultivated, non-rhizosphere and rhizosphere soil, and in its roots. Additionally, the bacterial community structure was determined in the seeds of R. communis at the onset of the experiment. Plants were cultivated in soil at three different watering regimes, i.e. 50% water holding capacity (WHC) or adjusted to 50% WHC every two weeks or every month. Reducing the soil water content strongly reduced plant and root dry biomass and plant development, but had little effect on the bacterial community structure. The bacterial community structure was affected significantly by cultivation of R. communis and showed large variations over time. After 6 months, the root endophytic bacterial community resembled that in the seeds more than in the rhizosphere. It was found that water content had only a limited effect on the bacterial community structure and the different bacterial groups, but R. communis affected the bacterial community profoundly.


2018 ◽  
Vol 8 (6) ◽  
Author(s):  
Yu‐Xi Zhu ◽  
Yue‐Ling Song ◽  
Ary A. Hoffmann ◽  
Peng‐Yu Jin ◽  
Shi‐Mei Huo ◽  
...  

2021 ◽  
Author(s):  
Bing Liu ◽  
Jiahao Lai ◽  
Simeng Wu ◽  
Junxi Jiang ◽  
Weigang Kuang

Abstract The selective infection of Xanthomonas citri pv. citri to citrus cultivars is universally known, but it is not clarified whether there is a relationship between endophytic bacteria and the resistance of host variety to canker disease. In order to explore the relationship, Satsuma mandarin and Newhall navel orange were collected respectively as samples of resistant or susceptible cultivars to citrus canker disease, and endophytic bacterial community of two citrus cultivars were analyzed by using a next-generation, Illumina-based sequencing approach. Simultaneously, the seasonal dynamics of endophytic bacterial community and dominant genera were analyzed. The results showed that there were four dominant groups including Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes in all samples at phylum level. Endophytic bacteria were the most abundant in spring samples, then in summer and autumn samples. There were some differences between endophytic bacterial community of resistant citrus and that of susceptible citrus to canker disease, and the endophytic bacteria of Satsuma mandarin are more abundant than that of Newhall navel orange. According to the analysis of dominant bacteria in two citrus cultivars, it was found that some endophytic bacteria with antagonistic characteristics existed universally in all samples, although the dominant bacteria in different seasonal sample were different. However, in Newhall navel orange of susceptible citrus to canker disease, there were not only some bacteria against Xanthomonas citri pv. citri, but also some cooperative bacteria of canker occurrence like Stenotrophomonas.


2019 ◽  
Vol 7 (2) ◽  
pp. 47 ◽  
Author(s):  
Zhen-Shan Deng ◽  
Bao-Cheng Zhang ◽  
Xiang-Ying Qi ◽  
Zhi-Hong Sun ◽  
Xiao-Long He ◽  
...  

Pennisetum sinese, a source of bio-energy with high biomass production, is a species that contains high crude protein and will be useful for solving the shortage of forage grass after the implementation of “Green for Grain” project in the Loess plateau of Northern Shaanxi in 1999. Plants may receive benefits from endophytic bacteria, such as the enhancement of plant growth or the reduction of plant stress. However, the composition of the endophytic bacterial community associated with the roots of P. sinese is poorly elucidated. In this study, P. sinese from five different samples (Shaanxi province, SX; Fujian province, FJ; the Xinjiang Uyghur autonomous prefecture, XJ and Inner Mongolia, including sand (NS) and saline-alkali land (NY), China) were investigated by high-throughput next-generation sequencing of the 16S rDNA V3-V4 hypervariable region of endophytic bacteria. A total of 313,044 effective sequences were obtained by sequencing five different samples, and 957 effective operational taxonomic units (OTUs) were yielded at 97% identity. The phylum Proteobacteria, the classes Gammaproteobacteria and Alphaproteobacteria, and the genera Pantoea, Pseudomonas, Burkholderia, Arthrobacter, Psychrobacter, and Neokomagataea were significantly dominant in the five samples. In addition, our results demonstrated that the Shaanxi province (SX) sample had the highest Shannon index values (3.795). We found that the SX (308.097) and NS (126.240) samples had the highest and lowest Chao1 richness estimator (Chao1) values, respectively. Venn graphs indicated that the five samples shared 39 common OTUs. Moreover, according to results of the canonical correlation analysis (CCA), soil total carbon, total nitrogen, effective phosphorus, and pH were the major contributing factors to the difference in the overall composition of the bacteria community in this study. Our data provide insights into the endophytic bacteria community composition and structure of roots associated with P. sinese. These results might be useful for growth promotion in different samples, and some of the strains may have the potential to improve plant production in future studies.


2021 ◽  
Author(s):  
Hongfei Wang ◽  
Manik Prabhu Narsing Rao ◽  
Yanli Gao ◽  
Xinyang Li ◽  
Rui Gao ◽  
...  

Abstract Background: The seed dimorphism was thought to be a bet-hedging strategy, which assists plants to survive in the disturbed environment and has been widely studied for their ecological adaptation mechanism. Many studies showed that seed-associated microorganisms play an important role in enhancing plant fitness, but information regarding endophytic bacteria associated with dimorphic seeds is limited. This study explores the influence of seed coat structure and seed phytochemical properties on the community composition and diversity of endophytic bacteria of dimorphic seeds of Suaeda glauca. In the present study, we firstly used 16S rRNA high-throughput gene sequencing method to compare the bacterial diversity and community composition between brown and black seeds of Suaeda glauca. Results: A significant difference was observed in seed coat structure and phytochemical properties between brown and black seeds of S. glauca. Total 9 phyla, 13 classes, 31 orders, 53 families, 102 genera were identified in the dimorphic seeds. The dominant phyla were Proteobacteria, Firmicutes, and Actinobacteria. The results showed that seed dimorphism had little impact on the diversity and richness of endophytic bacterial communities but significantly differs in the relative abundance of the bacterial community between brown and black seeds. At the phylum level, Actinobacteria tend to be enriched significantly in brown seeds. At the genus level, Rhodococcus, Ralstonia, Pelomonas and Bradyrhizobium tend to be enriched significantly in brown seeds, while Marinilactibacillus was mainly found in black seeds. Besides, brown seeds harbored a large number of bacteria with plant-growth-promoting traits, whereas black seeds presented bacteria with enzyme activities (i.e. pectinase, cellulolytic and xylanolytic activities). Conclusion: The endophytic bacterial community compositions were significantly different between dimorphic seeds of Suaeda glauca, and play an important role in the ecological adaptation of dimorphic seeds by performing different bacterial function roles. The endophytic bacterial communities of the dimorphic seeds might be influenced mainly by the seed coat structure and partly by seed phytochemical characteristics. These findings provide valuable information for better understanding of the ecological adaptation strategy of dimorphic seeds in the disturbed environment.


2009 ◽  
Vol 8 (4) ◽  
pp. 1408-1422 ◽  
Author(s):  
R.E.L. Procpio ◽  
W.L. Arajo ◽  
W. Maccheroni Jr. ◽  
J.L. Azevedo

Sign in / Sign up

Export Citation Format

Share Document