Walking patterns of Trichogramma chilonis and Trichogrammatoidea bactrae upon vegetable leaf surfaces

2020 ◽  
Vol 50 (1) ◽  
pp. 38-49
Author(s):  
Desen Wang ◽  
Xiaofang He ◽  
Chengyin Zhao ◽  
Yurong He ◽  
Lihua Lu ◽  
...  
Biofouling ◽  
2021 ◽  
pp. 1-13
Author(s):  
Md. Furkanur Rahaman Mizan ◽  
Hye Ran Cho ◽  
Md. Ashrafudoulla ◽  
Junbin Cho ◽  
Md. Iqbal Hossain ◽  
...  

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Hend O. Mohamed

Abstract Background The Egyptian cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) is one of the major insect pests, causing a significant damage on different cultivated agricultural crops. Developing an alternative non-chemical tool, an effective and environmentally friendly method to suppress pest's infestation is essentially needed. Therefore, biological control by releasing the egg parasitoids could be the most promising tool for integrated pest management. Results This study was designed to evaluate the efficacy of the egg parasitoid, Trichogrammatoidea bactrae Nagaraja (Hymenoptera: Trichogrammatidae) as a bio-control agent against S. littoralis egg masses with different physical characteristics (number of egg layer and degree of scale density) in a no-choice and choice tests, under laboratory conditions. Also, the parasitoids’ fitness in terms of parasitism percentage, developmental period, adults’ emergence percentage, female offspring percentage, and longevity were investigated. The results revealed that T. bactrae wasps had a great ability to parasitize S. littoralis egg masses, but with different rates, related to their layers and scales’ thickness in both tests. The highest parasitism percentage was observed on one-layer eggs, followed by two layers. However, 3-layer eggs were the least preferable one. High numbers of adult emergencies (> 80%) were observed in all tested egg masses, except in the case of 3 layers with high scales. Furthermore, female-biased sex ratios were noticed at all examined eggs, with only the exception of high-scaly eggs with a single layer that recorded the lowest rate (≤ 45%). Besides, the survival of adult female parasitoids was not significantly affected in both tests. Conclusions T. bactrae could be used as a bio-control agent against S. littoralis egg masses with different physical characteristics based on the achieved results.


Foods ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 575
Author(s):  
Songsirin Ruengvisesh ◽  
Chris R. Kerth ◽  
T. Matthew Taylor

Spinach and other leafy green vegetables have been linked to foodborne disease outbreaks of Escherichia coli O157:H7 and Salmonella enterica around the globe. In this study, the antimicrobial activities of surfactant micelles formed from the anionic surfactant sodium dodecyl sulfate (SDS), SDS micelle-loaded eugenol (1.0% eugenol), 1.0% free eugenol, 200 ppm free chlorine, and sterile water were tested against the human pathogens E. coli O157:H7 and Salmonella Saintpaul, and naturally occurring microorganisms, on spinach leaf surfaces during storage at 5 °C over 10 days. Spinach samples were immersed in antimicrobial treatment solution for 2.0 min at 25 °C, after which treatment solutions were drained off and samples were either subjected to analysis or prepared for refrigerated storage. Whereas empty SDS micelles produced moderate reductions in counts of both pathogens (2.1–3.2 log10 CFU/cm2), free and micelle-entrapped eugenol treatments reduced pathogens by >5.0 log10 CFU/cm2 to below the limit of detection (<0.5 log10 CFU/cm2). Micelle-loaded eugenol produced the greatest numerical reductions in naturally contaminating aerobic bacteria, Enterobacteriaceae, and fungi, though these reductions did not differ statistically from reductions achieved by un-encapsulated eugenol and 200 ppm chlorine. Micelles-loaded eugenol could be used as a novel antimicrobial technology to decontaminate fresh spinach from microbial pathogens.


1990 ◽  
Vol 173 (3-4) ◽  
pp. 109-118 ◽  
Author(s):  
F. A. Tom�s-Barber�n ◽  
E. Wollenweber

1990 ◽  
Vol 28 (4) ◽  
pp. 419-429 ◽  
Author(s):  
Henry A. Abbott ◽  
Louis P. Van Dyk ◽  
Nathanaël Grobbelaar

1966 ◽  
Vol 44 (4) ◽  
pp. 421-427 ◽  
Author(s):  
John M. Stewart ◽  
Edward A. C. Follett

Phragmites communis, Eriophorum vaginatum, Calluna vulgaris, and Sphagnum palustre are representative of plants whose remains are frequently encountered in Scottish peat deposits. The effects of preservation in peat on the surface features of their leaves were followed by electron microscopy. Wax projections were observed on the surfaces of mature living leaves of Phragmites and Eriophorum but not on Calluna or Sphagnum. Details of cell wall outlines and stomata (or pores) were clearly defined in Phragmites, Eriophorum, and Sphagnum, but obscured in Calluna. The previous year's leaves differed by displaying a general absence of wax projections, an erosion of the cuticular surface, which took the form of either a loss in definition of the cell wall outlines or a definite etching of the surface, and the presence of numerous microorganisms. The surface features of preserved leaves exhibited to a greater degree this erosion of cell wall outline and cuticular surface. This preliminary study has indicated that major alterations in the submicroscopic features of cuticularized leaf surfaces occur at the leaf litter stage. The primary agents responsible for this degradation would appear to be microorganisms in conjunction with the physical and chemical processes of peat formation.


Sign in / Sign up

Export Citation Format

Share Document