Geothermal Field and Tectono-Thermal Evolution since the Late Paleozoic of the Qaidam Basin, Western China

2015 ◽  
Vol 89 (2) ◽  
pp. 678-678 ◽  
Author(s):  
LI Zongxing ◽  
LIU Chenglin ◽  
MA Yinsheng
2012 ◽  
Vol 94-95 ◽  
pp. 73-78
Author(s):  
Zhenhua Liu ◽  
Zhigang Cheng ◽  
Jie Wu ◽  
Jianhua Zhang

Author(s):  
Tao Qian ◽  
Zongxiu Wang ◽  
Yu Wang ◽  
Shaofeng Liu ◽  
Wanli Gao ◽  
...  

The formation and evolution of an intracontinental basin triggered via the subduction or collision of plates at continental margins can record intracontinental tectonic processes. As a typical intracontinental basin during the Jurassic, the Qaidam Basin in western China records how this extensional basin formed and evolved in response to distant subduction or collisional processes and tectonism caused by stresses transmitted from distant convergent plate margins. The Jurassic evolution of the Qaidam Basin, in terms of basin-filling architecture, sediment dispersal pattern and basin properties, remains speculative; hence, these uncertainties need to be revisited. An integrated study of the stratigraphic succession, conglomerates, U-Pb geochronology, and Hf isotopes of detrital zircons was adopted to elucidate the Jurassic evolutionary process of the Qaidam Basin. The results show that a discrete Jurassic terrestrial succession characterized by alluvial fan, braided stream, braided river delta, and lacustrine deposits developed on the western and northern margins of the Qaidam Basin. The stratigraphic succession, U-Pb age dating, and Hf isotope analysis, along with the reconstructed provenance results, suggest small-scale distribution of Lower Jurassic sediments deposited via autochthonous sedimentation on the western margin of the basin, with material mainly originating from the Altyn Tagh Range. Lower Jurassic sediments in the western segment of the northern basin were shed from the Qilian Range (especially the South Qilian) and Eastern Kunlun Range. And coeval sediments in the eastern segment of the northern basin were originated from the Quanji massif. During the Middle-Late Jurassic, the primary source areas were the Qilian Range and Eastern Kunlun Range, which fed material to the whole basin. The Jurassic sedimentary environment in the Qaidam Basin evolved from a series of small-scale, scattered, and rift-related depressions distributed on the western and northern margins during the Early Jurassic to a larger, extensive, and unified depression occupying the whole basin in the Middle Jurassic. The Altyn Tagh Range rose to a certain extent during the Early Jurassic but lacked large-scale strike-slip tectonism throughout the Jurassic. At that time, the North Qaidam tectonic belt had not yet been uplifted and did not shed material into the basin during the Jurassic. The Qaidam Basin experienced intracontinental extensional tectonism with a northeast-southwest trend throughout the Jurassic in response to far-field effects driven by the sequential northward or northeastward amalgamation of blocks to the southern margin of the Qaidam Block and successive accretion of the Qiangtang Block and Lhasa Block onto the southern Eurasian margin during the Late Triassic−Early Jurassic and Late Jurassic−Early Cretaceous, respectively.


2018 ◽  
Vol 198 ◽  
pp. 100-115 ◽  
Author(s):  
Kun Yu ◽  
Yiwen Ju ◽  
Jin Qian ◽  
Zhenghui Qu ◽  
Chunjing Shao ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
pp. 181-194
Author(s):  
Qing-Bin Xie ◽  
Xin Li ◽  
Chuan-Long Li ◽  
Yong-Shu Zhang

With continuous improvements in nanotechnology, the development of micro/nanoscale pores and fractures in reservoirs can be more clearly identified, and great progress has been made in tight sandstone and shale. Bedrock has an ultralow porosity and is a reservoir with low permeability. To study the characteristics of micro/nanoscale pore development and reveal their petroleum significance in the eastern segment of the Altun Piedmont, research has been conducted with the use of cathodoluminescence, field emission scanning electron microscopy and energy spectrum analysis, formation microresistivity image logging, high-pressure mercury injection and nuclear magnetic logging. The results have shown that the porosity of the bedrock reservoir in the eastern segment of the Altun Piedmont, as measured by helium injection and nuclear magnetic logging, is between 0.004% and 9.76%, the average porosity is between 1.663% and 3.844%, and the permeability is between the maximum of 0.002 mD and 33.239 mD. The average permeability is between 0.02 mD and approximately 3.836 mD. Micro/nanopores are generally developed, with the majority being intragranular micro/nanopores, intercrystalline micro/nanopores and microcracks, as summarized by the field emission scanning electron microscopy and energy dispersive spectroscopy analysis. Four differently sized pores develop: micropores account for approximately 20%, transition pores account for approximately 30%, and mesopores and macropores account for approximately 25% each. The pore throat development below 100 nm is greater than 50% according to the collation of experimental data from high-pressure mercury intrusion; therefore, micro/nanopores are the main storage space in the study area, and the gas logging shows good results. Micro/nanopores are also one of the main reservoir spaces of bedrock reservoirs in conjunction with the conventional reservoir space, and thus, micro/nanopores have important petroleum significance.


Sign in / Sign up

Export Citation Format

Share Document