Merging computational fluid dynamics and machine learning to reveal animal migration strategies

Author(s):  
Simone Olivetti ◽  
Michael A. Gil ◽  
Vamsi K. Sridharan ◽  
Andrew M. Hein
2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Jongin Yang ◽  
Alan Palazzolo

Abstract Reynolds based thermo-elasto-hydrodynamic (TEHD) simulations of tilting pad journal bearings (TPJBs) generally provide accurate results; however, the uncertainty of the pad’s leading edge thermal boundary conditions causes uncertainty of the results. The highly complex thermal-flow mixing action between pads (BPs) results from the oil supply nozzle jets and geometric features. The conventional Reynolds approach employs mixing coefficients (MCs), estimated from experience, to approximate a uniform inlet temperature for each pad. Part I utilized complex computational fluid dynamics (CFD) flow modeling to illustrate that temperature distributions at the pad inlets may deviate strongly from being uniform. The present work retains the uniform MC model but obtains the MC from detailed three-dimensional CFD modeling and machine learning, which could be extended to the radially and axially varying MC case. The steps for implementing an artificial neural network (ANN) approach for MC regression are provided as follows: (1) utilize a design of experiment step for obtaining an adaptable training set, (2) conduct CFD simulations on the BP to obtain the outputs of the training set, (3) apply an ANN learning process by Levenverg–Mardquart backpropagation with the Bayesian regularization, and (4) couple the ANN MC results with conventional TEHD Reynolds models. An approximate log fitting method provides a simplified approach for MC regression. The effectiveness of the Reynolds TEHD TPJB model with ANN regression-based MC distributions is confirmed by comparison with CFD based TEHD TPJB model results. The method obtains an accuracy nearly the same as the complete CFD model, but with the computational economy of a Reynolds approach.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Jihad A. Badra ◽  
Fethi Khaled ◽  
Meng Tang ◽  
Yuanjiang Pei ◽  
Janardhan Kodavasal ◽  
...  

Abstract Gasoline compression ignition (GCI) engines are considered an attractive alternative to traditional spark-ignition and diesel engines. In this work, a Machine Learning-Grid Gradient Ascent (ML-GGA) approach was developed to optimize the performance of internal combustion engines. ML offers a pathway to transform complex physical processes that occur in a combustion engine into compact informational processes. The developed ML-GGA model was compared with a recently developed Machine Learning-Genetic Algorithm (ML-GA). Detailed investigations of optimization solver parameters and variable limit extension were performed in the present ML-GGA model to improve the accuracy and robustness of the optimization process. Detailed descriptions of the different procedures, optimization tools, and criteria that must be followed for a successful output are provided here. The developed ML-GGA approach was used to optimize the operating conditions (case 1) and the piston bowl design (case 2) of a heavy-duty diesel engine running on a gasoline fuel with a research octane number (RON) of 80. The ML-GGA approach yielded >2% improvements in the merit function, compared with the optimum obtained from a thorough computational fluid dynamics (CFD) guided system optimization. The predictions from the ML-GGA approach were validated with engine CFD simulations. This study demonstrates the potential of ML-GGA to significantly reduce the time needed for optimization problems, without loss in accuracy compared with traditional approaches.


Author(s):  
Ali Usman ◽  
Muhammad Rafiq ◽  
Muhammad Saeed ◽  
Ali Nauman ◽  
Andreas Almqvist ◽  
...  

2019 ◽  
Vol 127 (4) ◽  
pp. 959-973 ◽  
Author(s):  
Seung Ho Yeom ◽  
Ji Sung Na ◽  
Hwi-Dong Jung ◽  
Hyung-Ju Cho ◽  
Yoon Jeong Choi ◽  
...  

Obstructive sleep apnea (OSA) is a common sleep breathing disorder. With the use of computational fluid dynamics (CFD), this study provides a quantitative standard for accurate diagnosis and effective surgery based on the investigation of the relationship between airway geometry and aerodynamic characteristics. Based on computed tomography data from patients having normal geometry, 4 major geometric parameters were selected and a total of 160 idealized cases were modeled and simulated. We created a predictive model using Gaussian process regression (GPR) through a data set obtained through numerical method. The results demonstrated that the mean accuracy of the overall GPR model was ~72% with respect to the CFD results for the realistic upper airway model. A support vector machine model was also used to identify the degree of OSA symptoms in patients as normal-mild and moderate and severe. We achieved an accuracy of 82.5% with the training data set and an accuracy of 80% with the test data set. NEW & NOTEWORTHY There have been many studies on the analysis of obstructive sleep apnea (OSA) through computational fluid dynamics and finite element analysis. However, these methods are not useful for practical medical applications because they have limited information for OSA symptom. This study employs the machine learning algorithm to predict flow characteristics quickly and to determine the symptoms of the patient's OSA. The overall Gaussian process regression model's mean accuracy was ~72%, and the accuracy for the classification of OSA was >80%.


CrystEngComm ◽  
2018 ◽  
Vol 20 (41) ◽  
pp. 6546-6550 ◽  
Author(s):  
Yosuke Tsunooka ◽  
Nobuhiko Kokubo ◽  
Goki Hatasa ◽  
Shunta Harada ◽  
Miho Tagawa ◽  
...  

The combination of the CFD simulation and machine learning thus makes it possible to determine optimized parameters for high-quality and large-diameter crystals.


Sign in / Sign up

Export Citation Format

Share Document