Testing management alternatives for controlling nest parasites in an endangered bird

2020 ◽  
Author(s):  
E. Mather ◽  
D. J. Fogell ◽  
M. McCready ◽  
K. McInnes ◽  
J. G. Ewen
2008 ◽  
Author(s):  
Glenn E. Meyer ◽  
Carolyn B. Becker ◽  
Melissa M. Graham ◽  
John S. Price ◽  
Ashley Arsena ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Víctor Camilo Pulido-Blanco ◽  
Elberth Hernando Pinzón-Sandoval ◽  
Carlos Felipe González-Chavarro ◽  
Pablo Antonio Serrano-Cely

AbstractThe larval stages of Carmenta theobromae Busck (1910) and Simplicivalva ampliophilobia Davis, Gentili-Poole and Mitter (2008) attack the subcortical zone and pith in guava trees, respectively, in the first productive nucleus of fruit trees in Colombia: Hoya del Río Suárez (HRS). The presence of pest insects has been reported in 98% of the farms sampled in HRS (n = 124), with up to 96 and 11 simultaneous larvae per tree, respectively. Although the aspects of the basic biology and life cycle of both pests have been resolved, there are no strategies for managing populations in the field. Therefore, the aim of this study was to evaluate different management alternatives under laboratory and field conditions in HRS. In laboratory conditions, a completely randomized design was used in two separate experiments, each with six treatments: T1: Spinosad (a mixture of Spinosad A and D); T2: S-1,2-di(ethoxycarbonyl) ethyl 0,0-dimethylphosphorodithioate (chemical control); T3: Lecanicillium lecanii; T4: Beauveria bassiana; T5: Mix of B. bassiana and B. brongniartii, and T6: distilled water (control). The number of dead larvae per replicate per treatment was evaluated (DL), with experimental units of five and three larvae, respectively. In the field, to the two best alternatives found for each pest in the laboratory, pruning and keeping the area around the plants free of weeds were added as cultural management, in two separate additional experiments, each with three larvae as experimental unit per treatment. For C. theobromae, the best laboratory alternatives were chemical control (DL: 3.78) and L. lecanii (DL: 2.33), followed without statistical differences by B. bassiana (DL: 1.67). In the field, the virulence of B. bassiana improved (DL: 3), and together with pruning and keeping the area around the plants clear of weeds (DL: 3), they stood out as the best alternatives. For S. ampliophilobia under laboratory conditions, the best alternatives were Spinosad (2.74) and chemical control (DL: 2.66), without significant difference. In the field, there were no statistical differences between the alternatives, except for the control. This statistical parity of cultural practices, and biological and chemical management is an argument in favor of the use of the former to the detriment of the third, especially when the harmful effects of the molecule S-1,2 di (ethoxycarbonyl) ethyl 0, 0-dimethyl phosphorodithioate have been proven in air, water and agricultural soils, in addition to its association with thyroid cancer in humans. This is a strong argument to favor the use of synergies of cultural and biological management methods framed in IPM, as opposed to the use of chemical agents whose harmful effects are strongly documented, and whose use is becoming increasingly prohibited.


2013 ◽  
Vol 30 (06) ◽  
pp. 1350021
Author(s):  
SONGLIN NIE ◽  
HUI JI ◽  
YEQING HUANG ◽  
ZHEN HU ◽  
YONGPING LI

Fluid contamination is one of the main reasons for the wear failure and the related downtime in a hydraulic power system. Filters play an important role in controlling the contamination effectively, increasing the reliability of the system, and maintaining the system economically. Due to the uncertainties of system parameters, the complicated relationship among components, as well as the lack of effective approach, managing filters is becoming one of the biggest challenges for engineers and decision makers. In this study, a robust interval-based minimax-regret analysis (RIMA) method is developed for the filter management in a fluid power system (FPS) under uncertainty. The RIMA method can handle the uncertainties existed in contaminant ingressions of the system and contaminant holding capacity of filters without making assumption on probabilistic distributions for random variables. Through analyzing the system cost of all possible filter management alternatives, an interval element regret matrix can be obtained, which enables decision makers to identify the optimal filter management strategy under uncertainty. The results of a case study indicate that the reasonable solutions generated can help decision makers understand the consequence of short-term and long-term decisions, identify optimal strategies for filter allocation and selection with minimized system-maintenance cost and system-failure risk.


2018 ◽  
Vol 8 (11) ◽  
pp. 2278 ◽  
Author(s):  
Martin Schvarcbacher ◽  
Katarína Hrabovská ◽  
Bruno Rossi ◽  
Tomáš Pitner

The Smart Grid (SG) is nowadays an essential part of modern society, providing two-way energy flow and smart services between providers and customers. The main drawback is the SG complexity, with an SG composed of multiple layers, with devices and components that have to communicate, integrate, and cooperate as a unified system. Such complexity brings challenges for ensuring proper reliability, resilience, availability, integration, and security of the overall infrastructure. In this paper, we introduce a new smart grid testing management platform (herein called SGTMP) for executing real-time hardware-in-the-loop SG tests and experiments that can simplify the testing process in the context of interconnected SG devices. We discuss the context of usage, the system architecture, the interactive web-based interface, the provided API, and the integration with co-simulations frameworks to provide virtualized environments for testing. Furthermore, we present one main scenario about the stress-testing of SG devices that can showcase the applicability of the platform.


Sign in / Sign up

Export Citation Format

Share Document