How many worlds are there?

2021 ◽  
Author(s):  
PAUL NADASDY
Keyword(s):  
Author(s):  
David D. Nolte

Galileo Unbound: A Path Across Life, The Universe and Everything traces the journey that brought us from Galileo’s law of free fall to today’s geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman’s dilemma of quantum particles taking all paths at once—setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.


Noûs ◽  
1984 ◽  
Vol 18 (4) ◽  
pp. 591 ◽  
Author(s):  
Richard A. Healey
Keyword(s):  

1997 ◽  
Vol 65 (3) ◽  
pp. 364
Author(s):  
Rosemary Geisdorfer Feal ◽  
Raymond D. Souza

2017 ◽  
Vol 26 (03) ◽  
pp. 1730008 ◽  
Author(s):  
Stephen D. H. Hsu

We explain the measure problem (cf. origin of the Born probability rule) in no-collapse quantum mechanics. Everett defined maverick branches of the state vector as those on which the usual Born probability rule fails to hold — these branches exhibit highly improbable behaviors, including possibly the breakdown of decoherence or even the absence of an emergent semi-classical reality. Derivations of the Born rule which originate in decision theory or subjective probability (i.e. the reasoning of individual observers) do not resolve this problem, because they are circular: they assume, a priori, that the observer occupies a non-maverick branch. An ab initio probability measure is sometimes assumed to explain why we do not occupy a maverick branch. This measure is constrained by, e.g. Gleason’s theorem or envariance to be the usual Hilbert measure. However, this ab initio measure ultimately governs the allocation of a self or a consciousness to a particular branch of the wave function, and hence invokes primitives which lie beyond the Everett wave function and beyond what we usually think of as physics. The significance of this leap has been largely overlooked, but requires serious scrutiny.


Nature ◽  
1974 ◽  
Vol 248 (5446) ◽  
pp. 299-299
Author(s):  
J. S. BELL
Keyword(s):  

2021 ◽  
Author(s):  
Peter Wurz ◽  
Audrey Vorburger ◽  
Alfred McEwen ◽  
Kathy Mandt ◽  
Ashley Davies ◽  
...  

<p>The Io Volcano Observer (IVO) is a proposed NASA Discovery-class mission (currently in Phase A), that would launch<span> in early 2029, arrive at </span> Jupiter in the early 2033, and perform ten flybys of Io while in Jupiter's orbit. IVO's mission motto is to 'follow the heat', shedding light onto tidal heating as a fundamental planetary process. Specifically, IVO will determine (i) how and where heat is generated in Io's interior, (ii) how heat is transported to the surface, and (iii) how Io has evolved with time. The answers to these questions will fill fundamental gaps in the current understanding of the evolution and habitability of many worlds across our Solar System and beyond where tidal heating plays a key role, and will give us insight into how early Earth, Moon, and Mars may have worked.</p><p>One of the five key science questions IVO will be addressing is determining Io's mass loss via atmospheric escape. Understanding Io's mass loss today will offer information on how the chemistry of Io has been altered from its initial state and would provide useful clues on how atmospheres on other bodies have evolved over time. IVO plans on measuring Io's mass loss in situ with the Ion and Neutral Mass Spectrometer (INMS), a successor to the instrument currently being built for the JUpiter Icy moons Explorer (JUICE). INMS will measure neutrals and ions in the mass range 1 – 300 u, with a mass resolution (M/ΔM) of 500, a dynamic range of > 10<sup>5</sup>, a detection threshold of 100 cm<sup>–3</sup> for an integration time of 5 s, and a cadence of 0.5 – 300 s per spectrum.</p><p>In preparation for IVO, we model atmospheric density profiles of species known and expected to be present on Io's surface from both measurements and previous modelling efforts. Based on the IVO mission design, we present three different measurement scenarios for INMS we expect to encounter at Io based on the planned flybys: (i) a purely sublimated atmosphere, (ii) the 'hot' atmosphere generated by lava fields, and (iii) the plume gases resulting from volcanic activity. We calculate the expected mass spectra to be recorded by INMS during these flybys for these atmospheric scenarios.</p>


Sign in / Sign up

Export Citation Format

Share Document