scholarly journals Economic evaluation of artificial insemination of sex‐sorted semen on a Brown Swiss dairy farm—A case study

2019 ◽  
Vol 90 (4) ◽  
pp. 597-603 ◽  
Author(s):  
Masahiro Osada ◽  
Hitomi Iwabuchi ◽  
Toru Aoki ◽  
Kika Sasaki ◽  
Hitoshi Ushijima ◽  
...  
Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 252
Author(s):  
Valerie E. Ryman ◽  
Felicia M. Kautz ◽  
Steve C. Nickerson

Staphylococcus aureus is one of the most concerning mastitis-causing pathogens in dairy cattle. Using basic microbiological techniques, S. aureus is typically identified by colony characteristics and hemolysis on blood agar where isolates without hemolysis are typically considered to be coagulase-negative staphylococci (CNS) isolates. Herein, we present a decade-long case study where suspected S. aureus isolates from one Georgia dairy farm were further tested to confirm presumptive identification. Presumptive identification of bacterial growth from 222 mammary secretions from bred Holstein heifers and lactating cows was conducted at the time of collection. Presumptive identification of S. aureus on blood agar was based on observation of colony morphology, color, and presence or absence of a broad zone of incomplete hemolysis and a smaller zone of complete hemolysis at 48 h. Those without hemolysis were presumptively characterized as CNS. All isolates were further plated on mannitol salt agar and a coagulase test was performed. A positive for both of these tests together was deemed to be S. aureus. A selection of isolates was tested using API® Staph to biochemically confirm S. aureus identification. Data showed that 63.96% of isolates presumed to be CNS isolates were identified as S. aureus, 9.46% of isolates presumed to be CNS isolates were identified as coagulase-positive staphylococci (CPS) species (but not S. aureus), and 26.58% of samples that were presumed to be CNS isolates were identified correctly.


Author(s):  
Paul C. Okonkwo ◽  
El Manaa Barhoumi ◽  
Wilfred Emori ◽  
Mahaad Issa Shammas ◽  
Paul C. Uzoma ◽  
...  

2016 ◽  
Vol 37 (1) ◽  
pp. 155 ◽  
Author(s):  
Fransérgio Rocha de Souza ◽  
Carla Cristian Campos ◽  
Natascha Almeida Marques da Silva ◽  
Ricarda Maria dos Santos

This study aimed to evaluate the effects of rectal temperature (RT) on conception rate (CR), as well as the effects of seasonality (spring-summer vs. autumn-winter) and timing of artificial insemination (AI) (morning vs. afternoon) on RT and CR in crossbred dairy cows (Holstein x Gyr). The experiment was conducted on a dairy farm in Centralina, MG, where 1,219 conventional and fixed-time inseminations were analyzed. The RT was measured immediately before AI using a digital thermometer. Pregnancy diagnosis was performed using ultrasonography between 28 and 60 days after AI. T The effects of seasonality and timing of AI on RT were analyzed with a Mann-Whitney U test and the effects of RT (above or below the average), seasonality and timing of AI on CR were analyzed with a Chi-squared test, both using the SAS program. The RT average was 39.4°C. Cows with RT ? 39.4°C had lower CR than cows with RT < 39.4°C (25.78% vs. 32.54%; P = 0.0096). During spring-summer, cows had higher RT (39.44°C ± 0.025 vs. 39.27°C ± 0.022; P < 0.0001) and lower CR (25.49% vs. 31.75%; P = 0.0146) compared with autumn-winter. Cows inseminated in the morning had lower RT (38.96°C ± 0.022 vs. 39.60°C ± 0.018; P < 0.0001) and higher CR (32.86% vs. 26.06%; P = 0.0102) than cows inseminated in the afternoon. In conclusion, crossbred dairy cows with rectal temperature equal to or greater than 39.4°C had lower conception rate. Moreover, rectal temperature and conception rate were affected by seasonality and insemination time.


Sign in / Sign up

Export Citation Format

Share Document