Sigma 1 receptor as a therapeutic target for amyotrophic lateral sclerosis

Author(s):  
Mireia Herrando‐Grabulosa ◽  
Núria Gaja‐Capdevila ◽  
José M. Vela ◽  
Xavier Navarro
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Pin-Tse Lee ◽  
Jean-Charles Liévens ◽  
Shao-Ming Wang ◽  
Jian-Ying Chuang ◽  
Bilal Khalil ◽  
...  

ABSTRACT In a subgroup of patients with amyotrophic lateral sclerosis (ALS)/Frontotemporal dementia (FTD), the (G4C2)-RNA repeat expansion from C9orf72 chromosome binds to the Ran-activating protein (RanGAP) at the nuclear pore, resulting in nucleocytoplasmic transport deficit and accumulation of Ran in the cytosol. Here, we found that the sigma-1 receptor (Sig-1R), a molecular chaperone, reverses the pathological effects of (G4C2)-RNA repeats in cell lines and in Drosophila. The Sig-1R colocalizes with RanGAP and nuclear pore proteins (Nups) and stabilizes the latter. Interestingly, Sig-1Rs directly bind (G4C2)-RNA repeats. Overexpression of Sig-1Rs rescues, whereas the Sig-1R knockout exacerbates, the (G4C2)-RNA repeats-induced aberrant cytoplasmic accumulation of Ran. In Drosophila, Sig-1R (but not the Sig-1R-E102Q mutant) overexpression reverses eye necrosis, climbing deficit, and firing discharge caused by (G4C2)-RNA repeats. These results on a molecular chaperone at the nuclear pore suggest that Sig-1Rs may benefit patients with C9orf72 ALS/FTD by chaperoning the nuclear pore assembly and sponging away deleterious (G4C2)-RNA repeats.


2015 ◽  
Vol 127 (1) ◽  
pp. 10-16 ◽  
Author(s):  
Timur A. Mavlyutov ◽  
Lian-Wang Guo ◽  
Miles L. Epstein ◽  
Arnold E. Ruoho

Author(s):  
Simon Couly ◽  
Bilal Khalil ◽  
Véronique Viguier ◽  
Julien Roussel ◽  
Tangui Maurice ◽  
...  

Abstract Sigma-1 receptor (S1R) is an endoplasmic reticulum (ER) chaperone that regulates mitochondrial respiration but also controls cellular defense against ER and oxidative stress. This makes S1R a potential therapeutic target in amyotrophic lateral sclerosis (ALS). Especially, as a missense mutation E102Q in S1R has been reported in few familial ALS cases. However, the pathogenicity of S1RE102Q and the beneficial impact of S1R in the ALS context remain to be demonstrated in vivo. To address this, we generated transgenic Drosophila that express human wild-type S1R or S1RE102Q. Expression of mutant S1R in fly neurons induces abnormal eye morphology and locomotor defects in a dose-dependent manner. This was accompanied by abnormal mitochondrial fragmentation, reduced ATP levels and a higher fatigability at the neuromuscular junction during high energy demand. Overexpressing IP3 receptor or glucose transporter mitigates the S1RE102Q-induced eye phenotype, further highlighting the role of calcium and energy metabolism in its toxicity. More importantly, we showed that wild-type S1R rescues locomotor activity and ATP levels of flies expressing the key ALS protein, TDP43. Moreover, overexpressing wild-type S1R enhances resistance of flies to oxidative stress. Therefore, our data provide the first genetic evidence that mutant S1R recapitulates ALS pathology in vivo while increasing S1R confers neuroprotection against TDP43 toxicity.


2014 ◽  
Vol 559 ◽  
pp. 174-178 ◽  
Author(s):  
Yoko Ono ◽  
Hirotaka Tanaka ◽  
Masafumi Takata ◽  
Yuki Nagahara ◽  
Yasuhiro Noda ◽  
...  

2021 ◽  
Author(s):  
Moataz Dowaidar

During the progression of Huntington's disease (HD), changes in Ca2+ signaling cause neuronal cells to lose a range of functional properties. GABAergic medium spiny neurons (MSNs) are able to prevent Ca2+ imbalance in the early stages of the illness through a number of compensatory strategies. However, as people become older, their neuroprotective potential diminishes due to a decrease in metabolic activity and the generation of Ca2+-buffering proteins. Continuing Ca2+ regulation problems exhaust the cells' compensatory abilities, resulting in a continuous surge in cytosolic Ca2+ and neuronal degeneration.The sigma 1 receptor (S1R) is a potential therapeutic target for the treatment of HD because it regulates a number of cytosolic Ca2+-dependent signaling cascades. S1R activation by selective agonists protects neurons from glutamate excitotoxicity, reduces store-operated Ca2+ entry (SOCE) hyperactivation, and maintains the structural integrity of mitochondria-associated endoplasmic reticulum membranes (MAMs), which is required for synchronizing mitochondrial and endoplasmic reticulum (ER) activity to maintain cell bioenergetics balance. Because of the stability of Ca2+ signaling in neurons, pridopidine, a highly selective S1R agonist, has been demonstrated to protect neurons in cellular and animal models of HD.The synaptoprotective effect of pridopidine is very important since it is found in both cortical and striatal neurons, indicating that pridopidine has a systemic influence on HD therapy. Because synaptic dysfunctions are one of the earliest markers of neuropathology at the cellular level, normalization of Ca2+ balance by pridopidine may prevent disease development at the molecular level at the earliest stages. In this regard, the most significant therapeutic advantage of pridopidine will almost certainly be in preventative treatment, even before the start of the first clinical indications, which will improve neuronal cell compensatory abilities and significantly reduce the progression of HD.


2013 ◽  
Vol 716 (1-3) ◽  
pp. 78-93 ◽  
Author(s):  
Daniel Zamanillo ◽  
Luz Romero ◽  
Manuel Merlos ◽  
José Miguel Vela

2021 ◽  
Vol 12 ◽  
Author(s):  
Núria Gaja-Capdevila ◽  
Neus Hernández ◽  
Xavier Navarro ◽  
Mireia Herrando-Grabulosa

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder characterized by the death of motoneurons (MNs) with a poor prognosis. There is no available cure, thus, novel therapeutic targets are urgently needed. Sigma-1 receptor (Sig-1R) has been reported as a target to treat experimental models of degenerative diseases and, importantly, mutations in the Sig-1R gene cause several types of motoneuron disease (MND). In this study we compared the potential therapeutic effect of three Sig-1R ligands, the agonists PRE-084 and SA4503 and the antagonist BD1063, in the SOD1G93A mouse model of ALS. Pharmacological administration was from 8 to 16 weeks of age, and the neuromuscular function and disease progression were evaluated using nerve conduction and rotarod tests. At the end of follow up (16 weeks), samples were harvested for histological and molecular analyses. The results showed that PRE-084, as well as BD1063 treatment was able to preserve neuromuscular function of the hindlimbs and increased the number of surviving MNs in the treated female SOD1G93A mice. SA4503 tended to improve motor function and preserved neuromuscular junctions (NMJ), but did not improve MN survival. Western blot analyses revealed that the autophagic flux and the endoplasmic reticulum stress, two pathways implicated in the physiopathology of ALS, were not modified with Sig-1R treatments in SOD1G93A mice. In conclusion, Sig-1R ligands are promising tools for ALS treatment, although more research is needed to ascertain their mechanisms of action.


Sign in / Sign up

Export Citation Format

Share Document