Computer‐aided drug design of small molecule inhibitors of the ERCC1‐XPF protein–protein interaction

2020 ◽  
Vol 95 (4) ◽  
pp. 460-471 ◽  
Author(s):  
Francesco Gentile ◽  
Ahmed H. Elmenoufy ◽  
Gloria Ciniero ◽  
David Jay ◽  
Feridoun Karimi‐Busheri ◽  
...  
2020 ◽  
Vol 19 (16) ◽  
pp. 1920-1934
Author(s):  
Xylia Q. Peters ◽  
Thembeka H. Malinga ◽  
Clement Agoni ◽  
Fisayo A. Olotu ◽  
Mahmoud E.S. Soliman

Background: Tankyrases are known for their multifunctionalities within the poly(ADPribose) polymerases family and playing vital roles in various cellular processes which include the regulation of tumour suppressors. Tankyrases, which exist in two isoforms; Tankyrase 1 and 2, are highly homologous and an integral part of the Wnt β -catenin pathway that becomes overly dysregulated when hijacked by pro-carcinogenic machineries. Methods: In this review, we cover the distinct roles of the Tankyrase isoforms and their involvement in the disease pathogenesis. Also, we provide updates on experimentally and computationally derived antagonists of Tankyrase whilst highlighting the precedence of integrative computer-aided drug design methods towards the discovery of selective inhibitors. Results: Despite the high prospects embedded in the therapeutic targeting and blockade of Tankyrase isoforms, the inability of small molecule inhibitors to achieve selective targeting has remained a major setback, even until date. This explains numerous incessant drug design efforts geared towards the development of highly selective inhibitors of the respective Tankyrase isoforms since they mediate distinct aberrancies in disease progression. Therefore, considering the setbacks of conventional drug design methods, can computer-aided approaches actually save the day? Conclusion: The implementation of computer-aided drug design techniques in Tankyrase research could help complement experimental methods and facilitate ligand/structure-based design and discovery of small molecule inhibitors with enhanced selectivity.


2020 ◽  
Vol 21 (3) ◽  
pp. 703 ◽  
Author(s):  
Varnavas D. Mouchlis ◽  
Georgia Melagraki ◽  
Lefteris C. Zacharia ◽  
Antreas Afantitis

Aging-associated neurodegenerative diseases, which are characterized by progressive neuronal death and synapses loss in human brain, are rapidly growing affecting millions of people globally. Alzheimer’s is the most common neurodegenerative disease and it can be caused by genetic and environmental risk factors. This review describes the amyloid-β and Tau hypotheses leading to amyloid plaques and neurofibrillary tangles, respectively which are the predominant pathways for the development of anti-Alzheimer’s small molecule inhibitors. The function and structure of the druggable targets of these two pathways including β-secretase, γ-secretase, and Tau are discussed in this review article. Computer-Aided Drug Design including computational structure-based design and ligand-based design have been employed successfully to develop inhibitors for biomolecular targets involved in Alzheimer’s. The application of computational molecular modeling for the discovery of small molecule inhibitors and modulators for β-secretase and γ-secretase is summarized. Examples of computational approaches employed for the development of anti-amyloid aggregation and anti-Tau phosphorylation, proteolysis and aggregation inhibitors are also reported.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1591-1591
Author(s):  
Jolanta E. Grembecka ◽  
Kristin Graf ◽  
Yali Kong ◽  
Michael Douvas ◽  
Tomasz Cierpicki ◽  
...  

Abstract Core binding factor (CBF) is a heterodimeric transcription factor composed of RUNX1 (CBFα) and CBFβ subunits which are essential for normal blood cell development. CBFβ functions to increase the DNA-binding of the RUNX1 subunit 20–40 fold and to protect the RUNX1 subunit against ubiqitination and proteasome degradation, making this protein-protein interaction critical for CBF function. Two of the most common translocations involving the subunits of CBF are the inv(16) and the t(8;21) which produce the chimeric proteins CBFβ-SMMHC and AML1-ETO, respectively, which are associated with the development of Acute Myeloid Leukemia (AML). The AML1-ETO fusion protein is a dominant inhibitor of wildtype RUNX1-CBFβ activity in vivo and causes a blockage in normal hematopoiesis, predisposing for the development of leukemia. The interaction between CBFβ and AML1-ETO is critical for its function, therefore treatments targeting AML1-ETO and blocking its interaction with CBFβ are highly likely to be therapeutically beneficial. The CBFβ-SMMHC fusion protein causes dysregulation of CBF function by means of anomalously tight binding to RUNX1. Since binding to RUNX1 is required for the dysfunction associated with CBFβ-SMMHC, this interaction represents an excellent target for inhibition as a potential therapeutic strategy. We have initiated efforts to develop small molecule inhibitors of the RUNX1-CBFβ interaction as possible therapeutics for the treatment of the associated leukemias. Both virtual screening searches, focused on the X-ray structures of RUNX1 Runt domain and CBFβ, and high-throughput screening of NCI (National Cancer Institute) and Maybridge fragment libraries were used to identify initial lead compounds interacting with these proteins and blocking heterodimerization of CBF. Compounds were tested experimentally by FRET (Fluorescence Resonance Energy Transfer) and ELISA for their inhibition of RUNX1-CBFβ interaction. This resulted in a number of initial lead compounds targeting either the Runt domain or CBFβ and inhibiting this protein-protein interaction. Based on the docking mode selected lead compounds were further optimized using medicinal chemistry approaches to increase their affinity and determine the structure-activity relationships (SAR). This resulted in several compounds with low micromolar affinity (IC50 < 10 μM) which effectively block the heterodimerization of CBF in vitro and in a cell-based assay. Interestingly, compounds targeting CBFβ bind to a site displaced from the binding interface for RUNX1 as shown by the NMR-based docking, i.e. these compounds function as allosteric inhibitors of this protein-protein interaction. The most potent compounds were tested either in the Kasumi-1 leukemia cell line harboring t(8;21) translocation or in the ME-1 cell line with inv(16), resulting in a blockage of proliferation, induction of apoptosis and differentiation of these cells. These compounds represent the first small molecule inhibitors targeting CBF and inhibiting this interaction. They represent good starting points for the development of therapeutically useful inhibitors. Several approaches are being explored to modify these compounds to achieve selectivity towards AML1-ETO or CBFβ-SMMHC oncoproteins versus wild type proteins.


Sign in / Sign up

Export Citation Format

Share Document