cancer cell invasion
Recently Published Documents


TOTAL DOCUMENTS

1165
(FIVE YEARS 233)

H-INDEX

77
(FIVE YEARS 9)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 280
Author(s):  
Laura Bizzozero ◽  
Margherita Pergolizzi ◽  
Davide Pascal ◽  
Elena Maldi ◽  
Giulia Villari ◽  
...  

Many nervous proteins are expressed in cancer cells. In this report, we asked whether the synaptic protein neuroligin 1 (NLGN1) was expressed by prostatic and pancreatic carcinomas; in addition, given the tendency of these tumors to interact with nerves, we asked whether NLGN1 played a role in this process. Through immunohistochemistry on human tissue microarrays, we showed that NLGN1 is expressed by prostatic and pancreatic cancer tissues in discrete stages and tumor districts. Next, we performed in vitro and in vivo assays, demonstrating that NLGN1 promotes cancer cell invasion and migration along nerves. Because of the established role of the neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) in tumor–nerve interactions, we assessed a potential NLGN1–GDNF cooperation. We found that blocking GDNF activity with a specific antibody completely inhibited NLGN1-induced in vitro cancer cell invasion of nerves. Finally, we demonstrated that, in the presence of NLGN1, GDNF markedly activates cofilin, a cytoskeletal regulatory protein, altering filopodia dynamics. In conclusion, our data further prove the existence of a molecular and functional cross-talk between the nervous system and cancer cells. NLGN1 was shown here to function along one of the most represented neurotrophic factors in the nerve microenvironment, possibly opening new therapeutic avenues.


Lab on a Chip ◽  
2022 ◽  
Author(s):  
Bingyu B. Li ◽  
Erica Y. Scott ◽  
Ninni E. Olafsen ◽  
Jason Matthews ◽  
Aaron R. Wheeler

We studied the effect of AHR expression on metastasis using cell invasion in digital microfluidic microgel systems (CIMMS), which provided a unique combination of functional discrimination with transcriptome profiling of sub-populations of cells.


Author(s):  
Sarah Bui ◽  
Isabel Mejia ◽  
Begoña Díaz ◽  
Yanzhuang Wang

The Golgi apparatus plays a central role in normal cell physiology by promoting cell survival, facilitating proliferation, and enabling cell-cell communication and migration. These roles are partially mediated by well-known Golgi functions, including post-translational modifications, lipid biosynthesis, intracellular trafficking, and protein secretion. In addition, accumulating evidence indicates that the Golgi plays a critical role in sensing and integrating external and internal cues to promote cellular homeostasis. Indeed, the unique structure of the mammalian Golgi can be fine-tuned to adapt different Golgi functions to specific cellular needs. This is particularly relevant in the context of cancer, where unrestrained proliferation and aberrant survival and migration increase the demands in Golgi functions, as well as the need for Golgi-dependent sensing and adaptation to intrinsic and extrinsic stressors. Here, we review and discuss current understanding of how the structure and function of the Golgi apparatus is influenced by oncogenic transformation, and how this adaptation may facilitate cancer cell invasion and metastasis.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Theresa Hwang ◽  
Sara S Parker ◽  
Samantha M Hill ◽  
Meucci W Ilunga ◽  
Robert A Grant ◽  
...  

Metazoan proteomes contain many paralogous proteins that have evolved distinct functions. The Ena/VASP family of actin regulators consists of three members that share an EVH1 interaction domain with a 100 % conserved binding site. A proteome-wide screen revealed photoreceptor cilium actin regulator (PCARE) as a high-affinity ligand for ENAH EVH1. Here, we report the surprising observation that PCARE is ~100-fold specific for ENAH over paralogs VASP and EVL and can selectively bind ENAH and inhibit ENAH-dependent adhesion in cells. Specificity arises from a mechanism whereby PCARE stabilizes a conformation of the ENAH EVH1 domain that is inaccessible to family members VASP and EVL. Structure-based modeling rapidly identified seven residues distributed throughout EVL that are sufficient to differentiate binding by ENAH vs. EVL. By exploiting the ENAH-specific conformation, we rationally designed the tightest and most selective ENAH binder to date. Our work uncovers a conformational mechanism of interaction specificity that distinguishes highly similar paralogs and establishes tools for dissecting specific Ena/VASP functions in processes including cancer cell invasion.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Akikazu Harada ◽  
Shinji Matsumoto ◽  
Yoshiaki Yasumizu ◽  
Toshiyuki Akama ◽  
Hidetoshi Eguchi ◽  
...  

Pancreatic cancer has a high mortality rate due to metastasis. Whereas KRAS is mutated in most pancreatic cancer patients, controlling KRAS or its downstream effectors has not been succeeded clinically. ARL4C is a small G protein whose expression is induced by the Wnt and EGF-RAS pathways. In the present study, we found that ARL4C is frequently overexpressed in pancreatic cancer patients and showed that its localization to invasive pseudopods is required for cancer cell invasion. IQGAP1 was identified as a novel interacting protein for ARL4C. ARL4C recruited IQGAP1 and its downstream effector, MMP14, to invasive pseudopods. Specific localization of ARL4C, IQGAP1, and MMP14 was the active site of invasion, which induced degradation of the extracellular matrix. Moreover, subcutaneously injected antisense oligonucleotide against ARL4C into tumor-bearing mice suppressed metastasis of pancreatic cancer. These results suggest that ARL4C-IQGAP1-MMP14 signaling is activated at invasive pseudopods of pancreatic cancer cells.


2021 ◽  
Author(s):  
Seula Keum ◽  
Soo Jung Yang ◽  
Esther Park ◽  
TaeIn Kang ◽  
Jee-Hye Choi ◽  
...  

Abstract Purpose Spatiotemporal regulation of cell membrane dynamics is a major process that promotes cancer cell invasion by acting as a driving force for cell migration. Beta-Pix (βPix), a guanine nucleotide exchange factor for Rac1, has been reported to be involved in actin-mediated cellular processes, such as cell migration, by interacting with various proteins. As yet, however, the molecular mechanisms underlying βPix-mediated cancer cell invasion remain unclear. Methods The clinical significance of βPix was analyzed in patients with colorectal cancer (CRC) using public clinical databases. Pull-down and immunoprecipitation assays were employed to identify novel binding partners for βPix. Additionally, various cell biological assays including immunocytochemistry and time-lapse video microscopy were performed to assess the effects of βPix on CRC progression. A βPix-SH3 antibody delivery system was used to determine the effects of the βPix-Dyn2 complex in CRC cells. Results We found that the Src homology 3 (SH3) domain of βPix interacts with the proline-rich domain of Dynamin 2 (Dyn2), a large GTPase. The βPix-Dyn2 interaction promoted lamellipodia formation, along with plasma membrane localization of membrane-type 1 matrix metalloproteinase (MT1-MMP). Furthermore, we found that Src kinase-mediated phosphorylation of the tyrosine residue at position 442 of βPix enhanced βPix-Dyn2 complex formation. Disruption of the βPix-Dyn2 complex by βPix-SH3 antibodies targeting intracellular βPix inhibited CRC cell invasion. Conclusions Our data indicate that spatiotemporal regulation of the Src-βPix-Dyn2 axis is crucial for CRC cell invasion by promoting membrane dynamics and MT1-MMP recruitment into the leading edge. The development of inhibitors that disrupt the βPix-Dyn2 complex may be a useful therapeutic strategy for CRC.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Yinghui Ren ◽  
Limin Cao ◽  
Limin Wang ◽  
Sijia Zheng ◽  
Qicheng Zhang ◽  
...  

AbstractTumor progression requires the communication between tumor cells and tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are major components of stromal cells. CAFs contribute to metastasis process through direct or indirect interaction with tumor cells; however, the underlying mechanism is largely unknown. Here, we reported that autophagy was upregulated in lung cancer-associated CAFs compared to normal fibroblasts (NFs), and autophagy was responsible for the promoting effect of CAFs on non-small cell lung cancer (NSCLC) cell migration and invasion. Inhibition of CAFs autophagy attenuated their regulation on epithelial–mesenchymal transition (EMT) and metastasis-related genes of NSCLC cells. High mobility group box 1 (HMGB1) secreted by CAFs mediated CAFs’ effect on lung cancer cell invasion, demonstrated by using recombinant HMGB1, HMGB1 neutralizing antibody, and HMGB1 inhibitor glycyrrhizin (GA). Importantly, the autophagy blockade of CAFs revealed that HMGB1 release was dependent on autophagy. We also found HMGB1 was responsible, at least in part, for autophagy activation of CAFs, suggesting CAFs remain active through an autocrine HMGB1 loop. Further study demonstrated that HMGB1 facilitated lung cancer cell invasion by activating the NFκB pathway. In a mouse xenograft model, the autophagy specific inhibitor chloroquine abolished the stimulating effect of CAFs on tumor growth. These results elucidated an oncogenic function for secretory autophagy in lung cancer-associated CAFs that promotes metastasis potential, and suggested HMGB1 as a novel therapeutic target.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1217
Author(s):  
Priyanka Shailendra Rana ◽  
Akram Alkrekshi ◽  
Wei Wang ◽  
Vesna Markovic ◽  
Khalid Sossey-Alaoui

The Wiskott–Aldrich syndrome protein (WASP) and WASP family verprolin-homologous protein (WAVE)—WAVE1, WAVE2 and WAVE3 regulate rapid reorganization of cortical actin filaments and have been shown to form a key link between small GTPases and the actin cytoskeleton. Upon receiving upstream signals from Rho-family GTPases, the WASP and WAVE family proteins play a significant role in polymerization of actin cytoskeleton through activation of actin-related protein 2/3 complex (Arp2/3). The Arp2/3 complex, once activated, forms actin-based membrane protrusions essential for cell migration and cancer cell invasion. Thus, by activation of Arp2/3 complex, the WAVE and WASP family proteins, as part of the WAVE regulatory complex (WRC), have been shown to play a critical role in cancer cell invasion and metastasis, drawing significant research interest over recent years. Several studies have highlighted the potential for targeting the genes encoding either part of or a complete protein from the WASP/WAVE family as therapeutic strategies for preventing the invasion and metastasis of cancer cells. WAVE2 is well documented to be associated with the pathogenesis of several human cancers, including lung, liver, pancreatic, prostate, colorectal and breast cancer, as well as other hematologic malignancies. This review focuses mainly on the role of WAVE2 in the development, invasion and metastasis of different types of cancer. This review also summarizes the molecular mechanisms that regulate the activity of WAVE2, as well as those oncogenic pathways that are regulated by WAVE2 to promote the cancer phenotype. Finally, we discuss potential therapeutic strategies that target WAVE2 or the WAVE regulatory complex, aimed at preventing or inhibiting cancer invasion and metastasis.


Sign in / Sign up

Export Citation Format

Share Document