Demographic Connectivity for Ursid Populations at Wildlife Crossing Structures in Banff National Park

2013 ◽  
Vol 27 (4) ◽  
pp. 721-730 ◽  
Author(s):  
MICHAEL A. SAWAYA ◽  
ANTHONY P. CLEVENGER ◽  
STEVEN T. KALINOWSKI
2014 ◽  
Vol 281 (1780) ◽  
pp. 20131705 ◽  
Author(s):  
Michael A. Sawaya ◽  
Steven T. Kalinowski ◽  
Anthony P. Clevenger

Roads can fragment and isolate wildlife populations, which will eventually decrease genetic diversity within populations. Wildlife crossing structures may counteract these impacts, but most crossings are relatively new, and there is little evidence that they facilitate gene flow. We conducted a three-year research project in Banff National Park, Alberta, to evaluate the effectiveness of wildlife crossings to provide genetic connectivity. Our main objective was to determine how the Trans-Canada Highway and crossing structures along it affect gene flow in grizzly ( Ursus arctos ) and black bears ( Ursus americanus ). We compared genetic data generated from wildlife crossings with data collected from greater bear populations. We detected a genetic discontinuity at the highway in grizzly bears but not in black bears. We assigned grizzly bears that used crossings to populations north and south of the highway, providing evidence of bidirectional gene flow and genetic admixture. Parentage tests showed that 47% of black bears and 27% of grizzly bears that used crossings successfully bred, including multiple males and females of both species. Differentiating between dispersal and gene flow is difficult, but we documented gene flow by showing migration, reproduction and genetic admixture. We conclude that wildlife crossings allow sufficient gene flow to prevent genetic isolation.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Lauren Stewart ◽  
Bryson Russell ◽  
Evan Zelig ◽  
Gaurang Patel ◽  
Kaitlin Stack Whitney

Banff National Park (BNP) is Canada’s oldest national park and a very popular one, with both year-round residents and millions of annual visitors. In turn, this means there are several busy road and rail transportation routes throughout the park. These factors can have a number of negative effects on local wildlife. The wildlife crossing structures of the Trans-Canada Highway in BNP have become a key conservation tool to conserve biodiversity in the park and beyond. As the first large-scale operation of highway mitigation of its kind in North America, it is a perfect case for understanding the conservation value of highway overpasses and underpasses for a variety of wildlife species including both large and small mammals. It was determined from the research that there is a vast majority of information available for large mammals compared to small mammals. Small mammals used the crossing structures to avoid predators, while large mammals used the crossing structures to avoid humans. The design of the structure was extremely influential on its effectiveness with black bears and cougars preferring narrow bridges with cover, elk preferring wide, open bridges, and smaller mammals, such as weasels, snowshoe hares, and some mice preferring culverts with vegetation cover.


2021 ◽  
Vol 13 (2) ◽  
pp. 675
Author(s):  
Hyunjin Seo ◽  
Chulhyun Choi ◽  
Kyeongjun Lee ◽  
Donggul Woo

Roads are notable and responsible for the loss of biodiversity and disruption of wildlife habitats connectivity. Wildlife crossing structures (WCS) help wildlife move between habitats by connecting fragmented habitats. Their effectiveness is affected by various factors. Here, to identify methods for improving the effectiveness of wildlife crossing structures, we controlled the effect of intrinsic factors, such as size, that are difficult to improve in an already installed area, and then, evaluated the differences in extrinsic factors using 12 landscape characteristics. Our results show that 18 wildlife crossing structures were selected with propensity-score (PS) matching method. The surrounding landscape characteristics differed between high-effectiveness wildlife crossing structures and low-effectiveness wildlife crossing structures. Particularly, there was a significant difference between the ‘statutory protected area’ and the ‘edge’ index of the morphological spatial pattern analysis among the landscape characteristic variables derived within 1 km2 of wildlife crossing structures. We empirically demonstrate that characteristics around highly effective WCS, statutory protected areas are widely distributed, and the ratio of edge of MSPA is low (within 1 km2). Therefore, an important outcome of our research is the demonstration that management of WCS itself is important, but conservation of surrounding habitats and landscape management plans are also significant.


2017 ◽  
Vol 130 (4) ◽  
pp. 281 ◽  
Author(s):  
David Hamer

Bears (Ursus spp.) in North America eat the seeds of several pines (Pinus spp.), including Limber Pine (P. flexilis E. James). Information on use of Limber Pine in Canada is limited to a report of three bear scats containing pine seeds found in Limber Pine stands of southwestern Alberta. After my preliminary fieldwork in Banff National Park revealed that bears were eating seeds of Limber Pine there, I conducted a field study in 2014–2015 to assess this use. Because bears typically obtain pine seeds from cone caches (middens) made by Red Squirrels (Tamiasciurus hudsonicus), I described the abundance, habitat characteristics, and use by bears of Red Squirrel middens in and adjacent to Limber Pine stands at six study sites. On Bow River escarpments, I found abundant Limber Pines (basal area 1–9 m2/ha) and middens (0.8 middens/ha, standard deviation [SD] 0.2). Of 24 middens, 13 (54%) had been excavated by bears, and three bear scats composed of pine seeds were found beside middens. Although Limber Pines occurred on steep, xeric, windswept slopes (mean 28°, SD 3), middens occurred on moderate slopes (mean 12°, SD 3) in escarpment gullies and at the toe of slopes in forests of other species, particularly Douglas-fir (Pseudotsuga menziesii). At the five other study sites, I found little or no use of Limber Pine seeds by bears, suggesting that Limber Pine habitat may be little used by bears unless the pines are interspersed with (non-Limber Pine) habitat with greater forest cover and less-steep slopes where squirrels establish middens. These observations provide managers with an additional piece of information regarding potential drivers of bear activity in the human-dominated landscape of Banff National Park’s lower Bow Valley.


2021 ◽  
Author(s):  
Jan Olof Helldin

Crossing structures for large wildlife are increasingly being constructed at major roads and railways in many countries, and current guidelines for wildlife mitigation at linear infrastructures tend to advocate for large crossing structures sited at major movement corridors for the target species. The concept of movement corridors has however been challenged, and pinching animal movements into bottlenecks entail risks. In this paper, I address the SLOSS dilemma of road ecology, i.e., the discussion whether a Single Large Or Several Small crossing structures along a linear barrier would produce the most benefit for wildlife. I point out risks, ecological as well as practical, with investing in one large crossing structure, and list a number of situations where it may be more beneficial to distribute the conservation efforts in the landscape by constructing several smaller crossing structures; for example when the ecological knowledge is insufficient, when animal interactions are expected to be significant, when the landscape changes over time, or when future human development cannot be controlled. I argue that such situations are often what infrastructure planning faces, and that the default strategy therefore should be to distribute rather than to concentrate passage opportunities along major transport infrastructures. I suggest that distributing passage opportunities over several smaller crossing structures would convey a risk diversification, and that this strategy could facilitate the planning of wildlife mitigation. What to choose would however depend on, i.a., landscape composition and ecology, and on relationships among target species. A single large should be selected where it is likely that it can serve a large proportion of target animals, and where the long-term functionality of the crossing structure can be guaranteed. I illustrate how species and regional differences may influence the choice, using the case of ungulates in Sweden. New research is needed to support trade-offs between size and number of crossing structures. Cost-effectiveness analyses of wildlife crossing structures are currently rare and need to be further explored. Camera trapping and video surveillance of crossing structures provide opportunities to analyze details concerning, for example, any individual biases according to sex, age, status and grouping, and any antagonism between species and individuals. Wildlife ecology research need to better address questions posed by road and railway planning regarding the importance of specific movement routes and movement distances.


2016 ◽  
Vol 47 (1) ◽  
pp. 90-110
Author(s):  
Qi Chen ◽  
Pearl Ann Reichwein

A new ski resort village plan proposed for Lake Louise in Banff National Park triggered intense opposition at public hearings in 1972. Local proponents, backed by Imperial Oil, had entered into agreements to expand services at Lake Louise, which led to federal public consultations. We investigate Parks Canada’s early public consultation process and how it was institutionalized in federal policy making from 1964 to 1979. Public debate was significant and influenced political decisions in the Village Lake Louise controversy. The National and Provincial Parks Association of Canada, Bow Valley Naturalists, Environmental Law Association, mountain clubs, academics, and others advocated for protection as conservation lobbyists and the Government of Alberta also objected to the proposal, leading Minister Jean Chrétien to halt the plan. It was a win for citizens, environmentalists, and ecological integrity as Village Lake Louise debates became Canada’s town hall. Past environmental protection is relevant to civil society and public space in a moment of new approvals for massive ski hill industry expansions in national parks. Precedents in civil society and governance can inform understanding of public consultation and a new environmental politics.


2021 ◽  
Vol 135 (1) ◽  
pp. 61-67
Author(s):  
David Hamer

Seeds of Whitebark Pine (Pinus albicaulis) are a major food for Grizzly Bears (Ursus arctos) in the Yellowstone ecosystem. In Canada, Grizzly Bears are known to eat Whitebark Pine seeds, but little additional information, such as the extent of such use and habitat characteristics of feeding sites, is available. Because Grizzly Bears almost always obtain Whitebark Pine seeds by excavating cones from persistent caching sites (middens) made by Red Squirrels (Tamiasciurus hudsonicus), it is possible to infer Whitebark Pine feeding when bears are located near excavated middens in Whitebark Pine stands. During 2013–2018, I conducted a retrospective study in Banff National Park using data from 23 Grizzly Bears equipped by Parks Canada staff with global positioning system (GPS) collars. My objectives were to use GPS fixes to determine the percentage of these bears that had been located in close proximity to excavated middens containing Whitebark Pine seeds and to describe the habitat at these excavated middens. I linked 15 bears (65%) to excavated middens and, by inference, consumption of Whitebark Pine seeds. Excavated middens occurred on high-elevation (mean 2103 ± 101 [SD] m), steep (mean 26° ± 8°) slopes facing mostly (96%) north through west (0–270°). Use of Whitebark Pine seeds by at least 65% of the 23 studied Grizzly Bears suggests that conservation of Whitebark Pine in Banff National Park would concomitantly benefit the at-risk population of Grizzly Bears.


Sign in / Sign up

Export Citation Format

Share Document