The use of environmental DNA in invasive species surveillance of the Great Lakes commercial bait trade

2014 ◽  
Vol 29 (2) ◽  
pp. 430-439 ◽  
Author(s):  
Lucas R. Nathan ◽  
Christopher L. Jerde ◽  
Michelle L. Budny ◽  
Andrew R. Mahon
2020 ◽  
Vol 11 (3) ◽  
pp. 607-632
Author(s):  
Andrew Tucker ◽  
Lindsay Chadderton ◽  
Gust Annis ◽  
Alisha Davidson ◽  
Joel Hoffman ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8287
Author(s):  
Amberly N. Hauger ◽  
Karmen M. Hollis-Etter ◽  
Dwayne R. Etter ◽  
Gary J. Roloff ◽  
Andrew R. Mahon

Invasive feral swine can damage ecosystems, disrupt plant and animal populations, and transmit diseases. Monitoring of feral swine populations requires expensive and labor-intensive techniques such as aerial surveys, field surveys for sign, trail cameras, and verifying landowner reports. Environmental DNA (eDNA) provides an alternative method for locating feral swine. To aid in detection of this harmful invasive species, a novel assay was developed incorporating molecular methods. From August 2017 to April 2018, water samples and stream data were collected along 400 m transects in two different stream types where swine DNA was artificially introduced to investigate potential factors affecting detection. A generalized linear model (family binomial) was used to characterize environmental conditions affecting swine DNA detection; detection was the dependent variable and stream measurements included stream type, distance downstream, water temperature, velocity, turbidity, discharge, and pH as independent variables. Parameters from the generalized linear model were deemed significant if 95% confidence intervals did not overlap 0. Detection probability for swine DNA negatively related to water temperature (β =  − 0.21, 95% CI [−0.35 to −0.09]), with the highest detection probability (0.80) at 0 °C and lowest detection probability (0.05) at 17.9 °C water temperature. Results indicate that sampling for swine eDNA in free-flowing stream systems should occur at lower water temperatures to maximize detection probability. This study provides a foundation for further development of field and sampling techniques for utilizing eDNA as a viable alternative to monitoring a terrestrial invasive species in northern regions of the United States.


2016 ◽  
Vol 42 (3) ◽  
pp. 703-707 ◽  
Author(s):  
Nancy A. Connelly ◽  
T. Bruce Lauber ◽  
Richard C. Stedman ◽  
Barbara A. Knuth

2007 ◽  
Vol 17 (3) ◽  
pp. 655-662 ◽  
Author(s):  
Christopher Costello ◽  
John M. Drake ◽  
David M. Lodge

2016 ◽  
Vol 37 (1) ◽  
pp. 131-136 ◽  
Author(s):  
Jean Secondi ◽  
Tony Dejean ◽  
Alice Valentini ◽  
Benjamin Audebaud ◽  
Claude Miaud

Detection is crucial in the study and control of invasive species but it may be limited by methodological issues. In amphibians, classical survey techniques exhibit variable detection probability depending on species and are often constrained by climatic conditions often requiring several site visits. Furthermore, detection may be reduced at low density because probability capture (passive traps), or activity (acoustic surveys) drop. Such limits may impair the study of invasive species because low density is typical of the onset of colonisation on a site. In the last few years, environmental DNA (eDNA) methods have proved their ability to detect the presence of aquatic species. We developed here an eDNA method to detectXenopus laevisin ponds. This austral African species is now present worldwide because of its use in biology and as a pet. Populations have settled and expanded on several continents so that it is now considered as one of the major invasive amphibians in the World. We detected the presence ofX. laevisat density as low as 1 ind/100 m2and found a positive relationship between density in ponds and rate of DNA amplification. Results show that eDNA can be successfully applied to survey invasive populations ofX. laeviseven at low density in order to confirm suspected cases of introduction, delimit the expansion of a colonized range, or monitor the efficiency of a control program.


2020 ◽  
Vol 35 (8) ◽  
pp. 668-678 ◽  
Author(s):  
Adam J. Sepulveda ◽  
Nanette M. Nelson ◽  
Christopher L. Jerde ◽  
Gordon Luikart

2011 ◽  
Vol 68 (3) ◽  
pp. 523-533 ◽  
Author(s):  
Lance A. Vrieze ◽  
Roger A. Bergstedt ◽  
Peter W. Sorensen

Stream-finding behavior of adult sea lamprey ( Petromyzon marinus ), an anadromous fish that relies on pheromones to locate spawning streams, was documented in the vicinity of an important spawning river in the Great Lakes. Untreated and anosmic migrating sea lampreys were implanted with acoustic transmitters and then released outside the Ocqueoc River. Lampreys swam only at night and then actively. When outside of the river plume, lampreys pursued relatively straight bearings parallel to the shoreline while making frequent vertical excursions. In contrast, when within the plume, lampreys made large turns and exhibited a weak bias towards the river mouth, which one-third of them entered. The behavior of anosmic lampreys resembled that of untreated lampreys outside of the plume, except they pursued a more northerly compass bearing. To locate streams, sea lampreys appear to employ a three-phase odor-mediated strategy that involves an initial search along shorelines while casting vertically, followed by river-water-induced turning that brings them close to the river’s mouth, which they then enter using rheotaxis. This novel strategy differs from that of salmonids and appears to offer this poor swimmer adaptive flexibility and suggests ways that pheromonal odors might be used to manage this invasive species.


Sign in / Sign up

Export Citation Format

Share Document