Temporal sequence of recovery-related events following maximal exercise assessed by heart rate variability and blood lactate concentration

2016 ◽  
Vol 37 (5) ◽  
pp. 536-543 ◽  
Author(s):  
Rosangela Akemi Hoshi ◽  
Luiz Carlos Marques Vanderlei ◽  
Moacir Fernandes de Godoy ◽  
Fábio do Nascimento Bastos ◽  
Jayme Netto ◽  
...  
2015 ◽  
Vol 40 (3) ◽  
pp. 269-273 ◽  
Author(s):  
Vicente Javier Clemente-Suárez

Many studies have researched the psychophysiological response and energy balance of athletes in numerous ultraendurance probes, but none has investigated an ultraendurance mountain running event. The current study aims to analyze changes in blood lactate concentration, rating of perceived exertion, heart rate, heart rate variability, and energy balance after the performance of an ultraendurance mountain running event. The parameters in the 6 participants who finished the event were analyzed (age, 30.8 ± 3.1 years; height, 176.2 ± 8.6 cm; body mass, 69.2 ± 3.7 kg). The race covered 54 km, with 6441 m of altitude change, 3556 m downhill and 2885 m uphill. The athletes completed together the race in 14 h and 6 min. After the ultraendurance event, the athletes presented a negative energy balance of 4732 kcal, a blood lactate concentration of 2.8 ± 0.3 mmol/L, a heart rate mean/heart rate maximum ratio of 0.64, a heart rate mean of 111.4 ± 5.9 beats/min, a decrease in vagal modulation, and an increase in sympathetic modulation, and recorded 19.5 ± 1.5 points on the 6–20 rating of perceived exertion scale. The event was a stressful stimulus for the athletes despite the low intensity measured by blood lactate concentration and heart rate. The results obtained may be used by coaches as a reference parameter of heart rate, heart rate variability, rating of perceived exertion, and lactate concentration to develop specific training programs. In addition, the energy balance data obtained in this research may improve nutritional intake strategies.


1981 ◽  
Vol 51 (4) ◽  
pp. 840-844 ◽  
Author(s):  
B. A. Stamford ◽  
A. Weltman ◽  
R. Moffatt ◽  
S. Sady

The purpose of this study was to determine the effects of resting and exercise recovery above [70% of maximum O2 uptake (VO2 max)] and below [40% of VO2 max] anaerobic threshold (AT) on blood lactate disappearance following maximal exercise. Blood lactate concentrations at rest (0.9 mM) and during exercise at 40% (1.3 mM) and 70% (3.5 mM) of VO2 max without preceding maximal exercise were determined on separate occasions and represented base lines for each condition. The rate of blood lactate disappearance from peak values was ascertained from single-component exponential curves fit for each individual subject for each condition using both the determined and resting base lines. When determined base lines were utilized, there were no significant differences in curve parameters between the 40 and 70% of VO2 max recoveries, and both were significantly different from the resting recovery. When a resting base line (0.9 mM) was utilized for all conditions, 40% of VO2 max demonstrated a significantly faster half time than either 70% of VO2 max or resting recovery. No differences were found between 70% of VO2 max and resting recovery. It was concluded that interpretation of the effectiveness of exercise recovery above and below AT with respect to blood lactate disappearance is influenced by the base-line blood lactate concentration utilized in the calculation of exponential half times.


Sports ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 82
Author(s):  
Jeffrey Rothschild ◽  
George H. Crocker

The purpose of this study was to examine the effects of a 2-km swim on markers of subsequent cycling performance in well-trained, age-group triathletes. Fifteen participants (10 males, five females, 38.3 ± 8.4 years) performed two progressive cycling tests between two and ten days apart, one of which was immediately following a 2-km swim (33.7 ± 4.1 min). Cycling power at 4-mM blood lactate concentration decreased after swimming by an average of 3.8% (p = 0.03, 95% CI −7.7, 0.2%), while heart rate during submaximal cycling (220 W for males, 150 W for females) increased by an average of 4.0% (p = 0.02, 95% CI 1.7, 9.7%), compared to cycling without prior swimming. Maximal oxygen consumption decreased by an average of 4.0% (p = 0.01, 95% CI −6.5, −1.4%), and peak power decreased by an average of 4.5% (p < 0.01, 95% CI −7.3, −2.3%) after swimming, compared to cycling without prior swimming. Results from this study suggest that markers of submaximal and maximal cycling are impaired following a 2-km swim.


2018 ◽  
Vol 97 (10) ◽  
pp. 1274-1280 ◽  
Author(s):  
Ke Lu ◽  
Malin Holzmann ◽  
Fahrad Abtahi ◽  
Kaj Lindecrantz ◽  
Pelle G Lindqvist ◽  
...  

1993 ◽  
Vol 84 (4) ◽  
pp. 441-447 ◽  
Author(s):  
Peter Báaráany ◽  
Ulla Freyschuss ◽  
Erna Pettersson ◽  
Jonas Bergström

1. The effects of correcting anaemia on exercise capacity were evaluated in 21 haemodialysis patients (aged 39 ± 12 years) before starting treatment with recombinant human erythropoietin (Hb concentration, 73 ± 10 g/l; total Hb, 59 ± 12% of expected), after correction of the anaemia to a Hb concentration of 108 ± 7 g/l and a total Hb 82 ± 10% of expected, and in 13 of the patients after 12 months on maintenance recombinant human erythropoietin treatment (Hb concentration 104 ± 14 g/l, total Hb 79 ± 17% of expected). Fifteen healthy subjects (aged 41 ± 9 years), who took no regular exercise, constituted the control group. Maximal exercise capacity was determined on a bicycle ergometer. Oxygen uptake, respiratory quotient, blood lactate concentration, heart rate and blood pressure were measured at rest and at maximal workload. 2. After 6 ± 3 months on recombinant human erythropoietin, maximal exercise capacity increased from 108 ± 27 W to 130 ± 36 W (P < 0.001) and the maximal oxygen uptake increased from 1.24 ± 0.39 litres/min to 1.50 ± 0.45 litres/min (P < 0.001). No significant changes in respiratory quotient (1.16 ± 0.13 versus 1.18 ± 0.13) and blood lactate concentration (4.0 ± 1.8 versus 3.6 ± 1.1 mmol/l) at maximal workload were observed, but the blood lactate concentration in the patients was significantly lower than that in the control subjects (6.7 ± 2.3 mmol/l, P < 0.01). After the correction of anaemia, the aerobic power was still 38% lower in the patients than in the control subjects and 17% lower than the reference values. 3. After 12 months on maintenance recombinant human erythropoietin treatment (17 ± 3 months from the start of the study), no further significant changes were observed in maximal exercise capacity (before start, 112 ± 31 W, 6 ± 3 months, 134 ± 42 W, 17 ± 3 months, 134 ± 50 W), maximal oxygen uptake (before start, 1.33 ± 0.45 litres/min; 6 ± 3 months, 1.59 ± 0.54 litres/min; 17 ± 3 months, 1.75 ± 0.78 litres/min) or blood lactate concentration (before start, 4.4 ± 1.9 mmol/l; 6 ± 3 months, 4.0 ± 1.0 mmol/l; 17 ± 3 months, 4.7 ± 2.0 mmol/l). 4. Thus, in haemodialysis patients the improvement in maximal aerobic power after the correction of anaemia persists without marked changes during long-term treatment with recombinant human erythropoietin. We did not observe any effects on exercise capacity that could be attributed to a spontaneous increase in physical activity after treatment of anaemia.


Sign in / Sign up

Export Citation Format

Share Document