Physical Training in Sedentary Middle-aged and Older Men II. Oxygen Uptake, Heart Rate, and Blood Lactate Concentration at Submaximal and Maximal Exercise

1969 ◽  
Vol 24 (4) ◽  
pp. 323-334 ◽  
Author(s):  
B. Saltin ◽  
L. H. Hartley ◽  
Åsa Kilbom ◽  
Irma Åstrand
1993 ◽  
Vol 84 (4) ◽  
pp. 441-447 ◽  
Author(s):  
Peter Báaráany ◽  
Ulla Freyschuss ◽  
Erna Pettersson ◽  
Jonas Bergström

1. The effects of correcting anaemia on exercise capacity were evaluated in 21 haemodialysis patients (aged 39 ± 12 years) before starting treatment with recombinant human erythropoietin (Hb concentration, 73 ± 10 g/l; total Hb, 59 ± 12% of expected), after correction of the anaemia to a Hb concentration of 108 ± 7 g/l and a total Hb 82 ± 10% of expected, and in 13 of the patients after 12 months on maintenance recombinant human erythropoietin treatment (Hb concentration 104 ± 14 g/l, total Hb 79 ± 17% of expected). Fifteen healthy subjects (aged 41 ± 9 years), who took no regular exercise, constituted the control group. Maximal exercise capacity was determined on a bicycle ergometer. Oxygen uptake, respiratory quotient, blood lactate concentration, heart rate and blood pressure were measured at rest and at maximal workload. 2. After 6 ± 3 months on recombinant human erythropoietin, maximal exercise capacity increased from 108 ± 27 W to 130 ± 36 W (P < 0.001) and the maximal oxygen uptake increased from 1.24 ± 0.39 litres/min to 1.50 ± 0.45 litres/min (P < 0.001). No significant changes in respiratory quotient (1.16 ± 0.13 versus 1.18 ± 0.13) and blood lactate concentration (4.0 ± 1.8 versus 3.6 ± 1.1 mmol/l) at maximal workload were observed, but the blood lactate concentration in the patients was significantly lower than that in the control subjects (6.7 ± 2.3 mmol/l, P < 0.01). After the correction of anaemia, the aerobic power was still 38% lower in the patients than in the control subjects and 17% lower than the reference values. 3. After 12 months on maintenance recombinant human erythropoietin treatment (17 ± 3 months from the start of the study), no further significant changes were observed in maximal exercise capacity (before start, 112 ± 31 W, 6 ± 3 months, 134 ± 42 W, 17 ± 3 months, 134 ± 50 W), maximal oxygen uptake (before start, 1.33 ± 0.45 litres/min; 6 ± 3 months, 1.59 ± 0.54 litres/min; 17 ± 3 months, 1.75 ± 0.78 litres/min) or blood lactate concentration (before start, 4.4 ± 1.9 mmol/l; 6 ± 3 months, 4.0 ± 1.0 mmol/l; 17 ± 3 months, 4.7 ± 2.0 mmol/l). 4. Thus, in haemodialysis patients the improvement in maximal aerobic power after the correction of anaemia persists without marked changes during long-term treatment with recombinant human erythropoietin. We did not observe any effects on exercise capacity that could be attributed to a spontaneous increase in physical activity after treatment of anaemia.


2016 ◽  
Vol 37 (5) ◽  
pp. 536-543 ◽  
Author(s):  
Rosangela Akemi Hoshi ◽  
Luiz Carlos Marques Vanderlei ◽  
Moacir Fernandes de Godoy ◽  
Fábio do Nascimento Bastos ◽  
Jayme Netto ◽  
...  

2016 ◽  
Vol 22 ◽  
pp. 20 ◽  
Author(s):  
Veronika Myran Wee ◽  
Erna Von Heimburg ◽  
Roland Van den Tillaar

The aim of this study was to compare perceptual and physiological variables between running on three different modalities — an indoor athletics track, a motorized treadmill, and a non-motorized curved treadmill — for 1000 m at three different velocities. Ten male athletes (age 24±3 years, body mass 69.8±6.91 kg, height 1.80±0.06 m, VO2peak 69.0±6.70 ml/kg/ min) conducted three 1000 m laps at increasing velocity on three different running modalities. The athletes had a 3-minute recovery between each lap, where the rate of perceived exertion (RPE) was registered and the blood lactate concentration and heart rate were measured. Oxygen uptake was measured using a portable metabolic analyser. The physiological (oxygen uptake, heart rate, and blood lactate concentration) and perceptual (RPE) variables were higher when running on a non-motorized curved treadmill compared with running on the track or a motorized treadmill. No differences were found between running on a motorized treadmill and the track except for the RPE, which was lower when running on the track compared with the motorized treadmill. Running on a non-motorized curved treadmill at three different velocities results in a higher oxygen uptake (37%) and heart rate (22%) and is subjectively much harder than running on a track or a motorized treadmill at the same velocities. The difference is around 4 km/h when comparing the physiological and perceptual responses. Thus, when performing training sessions on a non-motorized curved treadmill, subjects should subtract 4 km/h from their regular pace on a track or motorized treadmill to get the same response considering oxygen uptake, heart rate, RPE and blood lactate concentration.


1981 ◽  
Vol 51 (4) ◽  
pp. 840-844 ◽  
Author(s):  
B. A. Stamford ◽  
A. Weltman ◽  
R. Moffatt ◽  
S. Sady

The purpose of this study was to determine the effects of resting and exercise recovery above [70% of maximum O2 uptake (VO2 max)] and below [40% of VO2 max] anaerobic threshold (AT) on blood lactate disappearance following maximal exercise. Blood lactate concentrations at rest (0.9 mM) and during exercise at 40% (1.3 mM) and 70% (3.5 mM) of VO2 max without preceding maximal exercise were determined on separate occasions and represented base lines for each condition. The rate of blood lactate disappearance from peak values was ascertained from single-component exponential curves fit for each individual subject for each condition using both the determined and resting base lines. When determined base lines were utilized, there were no significant differences in curve parameters between the 40 and 70% of VO2 max recoveries, and both were significantly different from the resting recovery. When a resting base line (0.9 mM) was utilized for all conditions, 40% of VO2 max demonstrated a significantly faster half time than either 70% of VO2 max or resting recovery. No differences were found between 70% of VO2 max and resting recovery. It was concluded that interpretation of the effectiveness of exercise recovery above and below AT with respect to blood lactate disappearance is influenced by the base-line blood lactate concentration utilized in the calculation of exponential half times.


Author(s):  
Nicola Giovanelli ◽  
Lara Mari ◽  
Asia Patini ◽  
Stefano Lazzer

Purpose: To compare energetics and spatiotemporal parameters of steep uphill pole walking on a treadmill and overground. Methods: First, the authors evaluated 6 male trail runners during an incremental graded test on a treadmill. Then, they performed a maximal overground test with poles and an overground test at 80% (OG80) of vertical velocity of maximal overground test with poles on an uphill mountain path (length = 1.3 km, elevation gain = 433 m). Finally, they covered the same elevation gain using poles on a customized treadmill at the average vertical velocity of the OG80. During all the tests, the authors measured oxygen uptake, carbon dioxide production, heart rate, blood lactate concentration, and rate of perceived exertion. Results: Treadmills required lower metabolic power (15.3 [1.9] vs 16.6 [2.0] W/kg, P = .002) and vertical cost of transport (49.6 [2.7] vs 53.7 [2.1] J/kg·m, P < .001) compared with OG80. Also, oxygen uptake was lower on a treadmill (41.7 [5.0] vs 46.2 [5.0] mL/kg·min, P = .001). Conversely, respiratory quotient was higher on TR80 compared with OG80 (0.98 [0.02] vs 0.89 [0.04], P = .032). In addition, rate of perceived exertion was higher on a treadmill and increased with elevation (P < .001). The authors did not detect any differences in other physiological measurements or in spatiotemporal parameters. Conclusions: Researchers, coaches, and athletes should be aware that steep treadmill pole walking requires lower energy consumption but same heart rate and rate of perceived exertion than overground pole walking at the same average intensity.


Sports ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 82
Author(s):  
Jeffrey Rothschild ◽  
George H. Crocker

The purpose of this study was to examine the effects of a 2-km swim on markers of subsequent cycling performance in well-trained, age-group triathletes. Fifteen participants (10 males, five females, 38.3 ± 8.4 years) performed two progressive cycling tests between two and ten days apart, one of which was immediately following a 2-km swim (33.7 ± 4.1 min). Cycling power at 4-mM blood lactate concentration decreased after swimming by an average of 3.8% (p = 0.03, 95% CI −7.7, 0.2%), while heart rate during submaximal cycling (220 W for males, 150 W for females) increased by an average of 4.0% (p = 0.02, 95% CI 1.7, 9.7%), compared to cycling without prior swimming. Maximal oxygen consumption decreased by an average of 4.0% (p = 0.01, 95% CI −6.5, −1.4%), and peak power decreased by an average of 4.5% (p < 0.01, 95% CI −7.3, −2.3%) after swimming, compared to cycling without prior swimming. Results from this study suggest that markers of submaximal and maximal cycling are impaired following a 2-km swim.


1965 ◽  
Vol 20 (3) ◽  
pp. 432-436 ◽  
Author(s):  
K. Lange Andersen ◽  
Lars Hermansen

Maximal oxygen uptake and related respiratory and circulatory functions were measured in sedentary and well-trained middle-aged men. Maximal oxygen uptakes averaged 2.63 liter/min in sedentary men and 3.36 liter/min in well-trained men, the latter value being essentially the same as found in young untrained students. The heart rate/ oxygen uptake relationship was found to be the same for sedentary-living men, regardless of age, but maximal heart rate was lower in older men. The maximal heart rate is probably the same in well-trained as in sedentary middle-aged men, this in contrast to what has been observed in younger age groups, where training reduces maximal heart rate. The exercise-induced hyperventilation takes place at an oxygen uptake corresponding to 70–80% of the capacity, this being the same in trained and untrained, and essentially the same as found in young adult subjects. maximal O2 uptake Submitted on March 23, 1964


2018 ◽  
Vol 97 (10) ◽  
pp. 1274-1280 ◽  
Author(s):  
Ke Lu ◽  
Malin Holzmann ◽  
Fahrad Abtahi ◽  
Kaj Lindecrantz ◽  
Pelle G Lindqvist ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document