scholarly journals Negative effects of submandibular botulinum neurotoxin A injections on oral motor function in children with drooling due to central nervous system disorders

2016 ◽  
Vol 59 (5) ◽  
pp. 531-537 ◽  
Author(s):  
Karen van Hulst ◽  
Carlyn V Kouwenberg ◽  
Pieter H Jongerius ◽  
Ton Feuth ◽  
Franciscus J A van den Hoogen ◽  
...  
2007 ◽  
Author(s):  
P. S. Seibert ◽  
P. D. Parker ◽  
C. M. Patterson ◽  
N. Whitener ◽  
J. O'Donnell ◽  
...  

2007 ◽  
Vol 12 (3) ◽  
pp. 370-377 ◽  
Author(s):  
Andrea M. Stahl ◽  
Gordon Ruthel ◽  
Edna Torres-Melendez ◽  
Tara A. Kenny ◽  
Rekha G. Panchal ◽  
...  

Botulinum toxin is an exceedingly potent inhibitor of neurotransmission across the neuromuscular junction, causing flaccid paralysis and death. The potential for misuse of this deadly poison as a bioweapon has added a greater urgency to the search for effective therapeutics. The development of sensitive and efficient cell-based assays for the evaluation of toxin antagonists is crucial to the rapid and successful identification of therapeutic compounds. The authors evaluated the sensitivity of primary cultures from 4 distinct regions of the embryonic chick nervous system to botulinum neurotoxin A (BoNT/A) cleavage of synaptosomal-associated protein of 25 kD (SNAP-25). Although differences in sensitivity were apparent, SNAP-25 cleavage was detectable in neuronal cells from each of the 4 regions within 3 h at BoNT/A concentrations of 1 nM or lower. Co-incubation of chick neurons with BoNT/A and toxin-neutralizing antibodies inhibited SNAP-25 cleavage, demonstrating the utility of these cultures for the assay of BoNT/A antagonists. ( Journal of Biomolecular Screening 2007:370-377)


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2065
Author(s):  
Irene Cortés-Pérez ◽  
Noelia Zagalaz-Anula ◽  
Desirée Montoro-Cárdenas ◽  
Rafael Lomas-Vega ◽  
Esteban Obrero-Gaitán ◽  
...  

Leap Motion Controller (LMC) is a virtual reality device that can be used in the rehabilitation of central nervous system disease (CNSD) motor impairments. This review aimed to evaluate the effect of video game-based therapy with LMC on the recovery of upper extremity (UE) motor function in patients with CNSD. A systematic review with meta-analysis was performed in PubMed Medline, Web of Science, Scopus, CINAHL, and PEDro. We included five randomized controlled trials (RCTs) of patients with CNSD in which LMC was used as experimental therapy compared to conventional therapy (CT) to restore UE motor function. Pooled effects were estimated with Cohen’s standardized mean difference (SMD) and its 95% confidence interval (95% CI). At first, in patients with stroke, LMC showed low-quality evidence of a large effect on UE mobility (SMD = 0.96; 95% CI = 0.47, 1.45). In combination with CT, LMC showed very low-quality evidence of a large effect on UE mobility (SMD = 1.34; 95% CI = 0.49, 2.19) and the UE mobility-oriented task (SMD = 1.26; 95% CI = 0.42, 2.10). Second, in patients with non-acute CNSD (cerebral palsy, multiple sclerosis, and Parkinson’s disease), LMC showed low-quality evidence of a medium effect on grip strength (GS) (SMD = 0.47; 95% CI = 0.03, 0.90) and on gross motor dexterity (GMD) (SMD = 0.73; 95% CI = 0.28, 1.17) in the most affected UE. In combination with CT, LMC showed very low-quality evidence of a high effect in the most affected UE on GMD (SMD = 0.80; 95% CI = 0.06, 1.15) and fine motor dexterity (FMD) (SMD = 0.82; 95% CI = 0.07, 1.57). In stroke, LMC improved UE mobility and UE mobility-oriented tasks, and in non-acute CNSD, LMC improved the GS and GMD of the most affected UE and FMD when it was used with CT.


Sign in / Sign up

Export Citation Format

Share Document