scholarly journals β-Cell signalling and insulin secretagogues: A path for improved diabetes therapy

2017 ◽  
Vol 19 ◽  
pp. 22-29 ◽  
Author(s):  
Susumu Seino ◽  
Kenji Sugawara ◽  
Norihide Yokoi ◽  
Harumi Takahashi
2018 ◽  
Vol 14 (12) ◽  
pp. 721-737 ◽  
Author(s):  
James A. Frank ◽  
Johannes Broichhagen ◽  
Dmytro A. Yushchenko ◽  
Dirk Trauner ◽  
Carsten Schultz ◽  
...  

1974 ◽  
Vol 162 (2) ◽  
pp. 448-457 ◽  
Author(s):  
Bo Hellman ◽  
Lars-Åke Idahl ◽  
Åke Lernmark ◽  
Janove Sehlin ◽  
Inge-Bert Täljedal

2003 ◽  
Vol 88 (6) ◽  
pp. 2753-2759 ◽  
Author(s):  
Anthony J. Weinhaus ◽  
Muhammad T. Tabiin ◽  
Philip Poronnik ◽  
Catalina A. Palma ◽  
David I. Cook ◽  
...  

2021 ◽  
Author(s):  
Brie Sorrenson ◽  
Waruni C Dissanayake ◽  
Fengyun Hu ◽  
Kate L Lee ◽  
Peter R Shepherd

The presence of adherens junctions and the associated protein β-catenin are requirements for the development of glucose stimulated insulin secretion (GSIS) in β-cells. Evidence indicates that modulation of β-catenin function in response to changes in glucose levels can modulate the levels of insulin secretion from β-cells but the role of β-catenin phosphorylation in this process has not been established. We find that a Ser552Ala version of β-catenin attenuates glucose stimulated insulin secretion indicating a functional role for Ser552 phosphorylation of β-catenin in insulin secretion. This is associated with alterations F/G actin ratio  but not  transcriptional activity of β-catenin.   Both glucose and GLP-1 stimulated phosphorylation of the serine 552 residue on β-catenin.  We investigated the possibility that an EPAC-PAK1 pathway might be involved in this phosphorylation event.  We find that reduction in PAK1 levels using siRNA attenuates both glucose and GLP-1 stimulated phosphorylation of β-catenin Ser552 and the effects of these on insulin secretion in β-cell models. Further, both the EPAC inhibitor ESI-09 and the PAK1 inhibitor IPA3 do the same in both β-cell models and mouse islets. Together this identifies phosphorylation of β-catenin at Ser552 as part of a cell signalling mechanism linking nutrient and hormonal regulation of β-catenin to modulation of  insulin secretory capacity of β-cells and indicates this phosphorylation event is regulated downstream of EPAC and PAK1 in β-cells.


The Lancet ◽  
2008 ◽  
Vol 372 (9632) ◽  
pp. 28-29 ◽  
Author(s):  
Antonio Secchi

2016 ◽  
Vol 56 (3) ◽  
pp. 175-187 ◽  
Author(s):  
Qi Cheng ◽  
Violeta D Beltran ◽  
Stanley M H Chan ◽  
Jeremy R Brown ◽  
Alan Bevington ◽  
...  

Abstract The branched-chain amino acids (BCAA) leucine, isoleucine and valine, are essential amino acids that play a critical role in cellular signalling and metabolism. They acutely stimulate insulin secretion and activate the regulatory serine/threonine kinase mammalian target of rapamycin complex 1 (mTORC1), a kinase that promotes increased β-cell mass and function. The effects of BCAA on cellular function are dependent on their active transport into the mammalian cells via amino acid transporters and thus the expression and activity of these transporters likely influence β-cell signalling and function. In this report, we show that the System-L transporters are required for BCAA uptake into clonal β-cell lines and pancreatic islets, and that these are essential for signalling to mTORC1. Further investigation revealed that the System-L amino acid transporter 1 (LAT1) is abundantly expressed in the islets, and that knockdown of LAT1 using siRNA inhibits mTORC1 signalling, leucine-stimulated insulin secretion and islet cell proliferation. In summary, we show that the LAT1 is required for regulating β-cell signalling and function in islets and thus may be a novel pharmacological/nutritional target for the treatment and prevention of type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document