scholarly journals Natural selection fluctuates at an extremely fine spatial scale inside a wild population of snapdragon plants

Evolution ◽  
2021 ◽  
Author(s):  
Pascal Marrot ◽  
Mathieu Latutrie ◽  
Jésaëlle Piquet ◽  
Benoit Pujol
2021 ◽  
Vol 15 (2) ◽  
pp. e0009139
Author(s):  
Maria Angenica F. Regilme ◽  
Thaddeus M. Carvajal ◽  
Ann–Christin Honnen ◽  
Divina M. Amalin ◽  
Kozo Watanabe

Dengue is endemic in tropical and subtropical countries and is transmitted mainly by Aedes aegypti. Mosquito movement can be affected by human-made structures such as roads that can act as a barrier. Roads can influence the population genetic structure of Ae. aegypti. We investigated the genetic structure and gene flow of Ae. aegypti as influenced by a primary road, España Boulevard (EB) with 2000-meter-long stretch and 24-meters-wide in a very fine spatial scale. We hypothesized that Ae. aegypti populations separated by EB will be different due to the limited gene flow as caused by the barrier effect of the road. A total of 359 adults and 17 larvae Ae. aegypti were collected from June to September 2017 in 13 sites across EB. North (N1-N8) and South (S1-S5) comprised of 211 and 165 individuals, respectively. All mosquitoes were genotyped at 11 microsatellite loci. AMOVA FST indicated significant genetic differentiation across the road. The constructed UPGMA dendrogram found 3 genetic groups revealing the clear separation between North and South sites across the road. On the other hand, Bayesian cluster analysis showed four genetic clusters (K = 4) wherein each individual samples have no distinct genetic cluster thus genetic admixture. Our results suggest that human-made landscape features such as primary roads are potential barriers to mosquito movement thereby limiting its gene flow across the road. This information is valuable in designing an effective mosquito control program in a very fine spatial scale.


2020 ◽  
Vol 54 (20) ◽  
pp. 12860-12869
Author(s):  
Xiaozhe Yin ◽  
Masoud Fallah-Shorshani ◽  
Rob McConnell ◽  
Scott Fruin ◽  
Meredith Franklin

Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 295-295
Author(s):  
A Oliva ◽  
P G Schyns

When people categorise complex stimuli such as faces, they might flexibly use the perceptual information available from the visual input. Three experiments were run to test this hypothesis with two different categorisations (gender and expression) of identical face stimuli. Stimuli were hybrids (Schyns and Oliva, 1994 Psychological Science5 195 – 200): they combined either a man or a woman with a particular expression at a coarse spatial scale with a face of the opposite gender with a different expression at the fine spatial scale. In experiment 1 we tested whether a gender vs an expression categorisation task tapped preferentially into a different spatial scale of the hybrids. Results showed that expression was biased to the fine scale, but that gender was not biased. In experiment 2 the same task was replicated, following a learning of the identity of the faces. It was then found that gender also became biased to the fine scale. In experiment 3 the expression task was changed to an identification of each expression to establish whether this could revert the scale biases observed in experiments 1 and 2. Results suggest that different categorisations of identical faces use different perceptual cues. This suggests that the nature of a task changes the representation of a stimulus.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241429
Author(s):  
Marine Randon ◽  
Olivier Le Pape ◽  
Bruno Ernande ◽  
Kélig Mahé ◽  
Filip A. M. Volckaert ◽  
...  

Marine organisms show population structure at a relatively fine spatial scale, even in open habitats. The tools commonly used to assess subtle patterns of connectivity have diverse levels of resolution and can complement each other to inform on population structure. We assessed and compared the discriminatory power of genetic markers and otolith shape to reveal the population structure on evolutionary and ecological time scales of the common sole (Solea solea), living in the Eastern English Channel (EEC) stock off France and the UK. First, we genotyped fish with Single Nucleotide Polymorphisms to assess population structure at an evolutionary scale. Then, we tested for spatial segregation of the subunits using otolith shape as an integrative tracer of life history. Finally, a supervised machine learning framework was applied to genotypes and otolith phenotypes to probabilistically assign adults to subunits and assess the discriminatory power of each approach. Low but significant genetic differentiation was found among subunits. Moreover, otolith shape appeared to vary spatially, suggesting spatial population structure at fine spatial scale. However, results of the supervised discriminant analyses failed to discriminate among subunits, especially for otolith shape. We suggest that the degree of population segregation may not be strong enough to allow for robust fish assignments. Finally, this study revealed a weak yet existing metapopulation structure of common sole at the fine spatial scale of the EEC based on genotypes and otolith shape, with one subunit being more isolated. Our study argues for the use of complementary tracers to investigate marine population structure.


Sign in / Sign up

Export Citation Format

Share Document