Vulnerability of the calcifying larval stage of the Antarctic sea urchinSterechinus neumayerito near-future ocean acidification and warming

2013 ◽  
Vol 19 (7) ◽  
pp. 2264-2275 ◽  
Author(s):  
Maria Byrne ◽  
Melanie A. Ho ◽  
Lucas Koleits ◽  
Casandra Price ◽  
Catherine K. King ◽  
...  

2011 ◽  
Vol 69 (3) ◽  
pp. 460-464 ◽  
Author(s):  
Steve S. Doo ◽  
Symon A. Dworjanyn ◽  
Shawna A. Foo ◽  
Natalie A. Soars ◽  
Maria Byrne

Abstract Doo, S. S., Dworjanyn, S. A., Foo, S. A., Soars, N. A., and Byrne, M. 2012. Impacts of ocean acidification on development of the meroplanktonic larval stage of the sea urchin Centrostephanus rodgersii. – ICES Journal of Marine Science, 69: 460–464. The effects of near-future ocean acidification/hypercapnia on larval development were investigated in the sea urchin Centrostephanus rodgersii, a habitat-modifying species from eastern Australia. Decreased pH (−0.3 to −0.5 pH units) or increased pCO2 significantly reduced the percentage of normal larvae. Larval growth was negatively impacted with smaller larvae in the pH 7.6/1800 ppm treatments. The impact of acidification on development was similar on days 3 and 5, indicating deleterious effects early in development. On day 3, increased abnormalities in the pH 7.6/1600 ppm treatment were seen in aberrant prism stage larvae and arrested/dead embryos. By day 5, echinoplutei in this treatment had smaller arm rods. Observations of smaller larvae in C. rodgersii have significant implications for this species because larval success may be a potential bottleneck for persistence in a changing ocean.



2014 ◽  
Vol 29 (1) ◽  
pp. 207-215 ◽  
Author(s):  
Christopher E. Cornwall ◽  
Tyler D. Eddy


2016 ◽  
Author(s):  
Merinda C. Nash ◽  
Sophie Martin ◽  
Jean-Pierre Gattuso

Abstract. Red calcareous coralline algae are thought to be among organisms the most vulnerable to ocean acidification due to the high solubility of their magnesium calcite skeleton. Although, skeletal mineralogy is proposed to change as CO2 and temperature continues rising, there is currently very little information available on the response of coralline algal carbonate mineralogy to near-future changes in pCO2 and temperature. Here we present results from a one-year controlled laboratory experiment to test mineralogical responses to pCO2 and temperature in the Mediterranean crustose coralline alga (CCA) Lithophyllum cabiochae. Our results show that Mg incorporation is mainly constrained by temperature (+1 mol% MgCO3 for an increase of 3 °C) and there was no response to pCO2. This suggests that L. cabiochae thalli have the ability to buffer calcifying medium against ocean acidification, enabling them to continue to deposit Mg-calcite with a significant mol% MgCO3 under elevated pCO2. Analyses of CCA dissolution chips showed a decrease in Mg content after 1 year for all treatments but this was not affected by pCO2 nor by temperature. Our findings suggest that biological processes exert a strong control on calcification on Mg-calcite and that CCA may be more resilient under rising CO2 than previously thought. However, previously demonstrated increased skeletal dissolution with ocean acidification will still have major consequences for the stability and maintenance of Mediterranean coralligenous habitats.



2017 ◽  
Vol 51 (21) ◽  
pp. 12097-12103 ◽  
Author(s):  
Jonathan Y. S. Leung ◽  
Sean D. Connell ◽  
Ivan Nagelkerken ◽  
Bayden D. Russell


2018 ◽  
Vol 14 (7) ◽  
pp. 20180371 ◽  
Author(s):  
Maggie D. Johnson ◽  
Robert C. Carpenter

Ocean acidification (OA) and nutrient enrichment threaten the persistence of near shore ecosystems, yet little is known about their combined effects on marine organisms. Here, we show that a threefold increase in nitrogen concentrations, simulating enrichment due to coastal eutrophication or consumer excretions, offset the direct negative effects of near-future OA on calcification and photophysiology of the reef-building crustose coralline alga, Porolithon onkodes . Projected near-future pCO 2 levels (approx. 850 µatm) decreased calcification by 30% relative to ambient conditions. Conversely, nitrogen enrichment (nitrate + nitrite and ammonium) increased calcification by 90–130% in ambient and high pCO 2 treatments, respectively. pCO 2 and nitrogen enrichment interactively affected instantaneous photophysiology, with highest relative electron transport rates under high pCO 2 and high nitrogen. Nitrogen enrichment alone increased concentrations of the photosynthetic pigments chlorophyll a , phycocyanin and phycoerythrin by approximately 80–450%, regardless of pCO 2 . These results demonstrate that nutrient enrichment can mediate direct organismal responses to OA. In natural systems, however, such direct benefits may be counteracted by simultaneous increases in negative indirect effects, such as heightened competition. Experiments exploring the effects of multiple stressors are increasingly becoming important for improving our ability to understand the ramifications of local and global change stressors in near shore ecosystems.



2019 ◽  
Vol 16 (15) ◽  
pp. 2997-3008 ◽  
Author(s):  
Scarlett Trimborn ◽  
Silke Thoms ◽  
Pascal Karitter ◽  
Kai Bischof

Abstract. Ecophysiological studies on Antarctic cryptophytes to assess whether climatic changes such as ocean acidification and enhanced stratification affect their growth in Antarctic coastal waters in the future are lacking so far. This is the first study that investigates the combined effects of the increasing availability of pCO2 (400 and 1000 µatm) and irradiance (20, 200 and 500 µmol photons m−2 s−1) on growth, elemental composition and photophysiology of the Antarctic cryptophyte Geminigera cryophila. Under ambient pCO2, this species was characterized by a pronounced sensitivity to increasing irradiance with complete growth inhibition at the highest light intensity. Interestingly, when grown under high pCO2 this negative light effect vanished, and it reached the highest rates of growth and particulate organic carbon production at the highest irradiance compared to the other tested experimental conditions. Our results for G. cryophila reveal beneficial effects of ocean acidification in conjunction with enhanced irradiance on growth and photosynthesis. Hence, cryptophytes such as G. cryophila may be potential winners of climate change, potentially thriving better in more stratified and acidic coastal waters and contributing in higher abundance to future phytoplankton assemblages of coastal Antarctic waters.



2009 ◽  
Vol 6 (12) ◽  
pp. 3009-3015 ◽  
Author(s):  
J. N. Havenhand ◽  
P. Schlegel

Abstract. An increasing number of studies are now reporting the effects of ocean acidification on a broad range of marine species, processes and systems. Many of these are investigating the sensitive early life-history stages that several major reviews have highlighted as being potentially most susceptible to ocean acidification. Nonetheless there remain few investigations of the effects of ocean acidification on the very earliest, and critical, process of fertilization, and still fewer that have investigated levels of ocean acidification relevant for the coming century. Here we report the effects of near-future levels of ocean acidification (≈−0.35 pH unit change) on sperm swimming speed, sperm motility, and fertilization kinetics in a population of the Pacific oyster Crassostrea gigas from western Sweden. We found no significant effect of ocean acidification – a result that was well-supported by power analysis. Similar findings from Japan suggest that this may be a globally robust result, and we emphasise the need for experiments on multiple populations from throughout a species' range. We also discuss the importance of sound experimental design and power analysis in meaningful interpretation of non-significant results.



2018 ◽  
Vol 15 (6) ◽  
pp. 1843-1862 ◽  
Author(s):  
Andrés S. Rigual Hernández ◽  
José A. Flores ◽  
Francisco J. Sierro ◽  
Miguel A. Fuertes ◽  
Lluïsa Cros ◽  
...  

Abstract. The Southern Ocean is experiencing rapid and relentless change in its physical and biogeochemical properties. The rate of warming of the Antarctic Circumpolar Current exceeds that of the global ocean, and the enhanced uptake of carbon dioxide is causing basin-wide ocean acidification. Observational data suggest that these changes are influencing the distribution and composition of pelagic plankton communities. Long-term and annual field observations on key environmental variables and organisms are a critical basis for predicting changes in Southern Ocean ecosystems. These observations are particularly needed, since high-latitude systems have been projected to experience the most severe impacts of ocean acidification and invasions of allochthonous species. Coccolithophores are the most prolific calcium-carbonate-producing phytoplankton group playing an important role in Southern Ocean biogeochemical cycles. Satellite imagery has revealed elevated particulate inorganic carbon concentrations near the major circumpolar fronts of the Southern Ocean that can be attributed to the coccolithophore Emiliania huxleyi. Recent studies have suggested changes during the last decades in the distribution and abundance of Southern Ocean coccolithophores. However, due to limited field observations, the distribution, diversity and state of coccolithophore populations in the Southern Ocean remain poorly characterised. We report here on seasonal variations in the abundance and composition of coccolithophore assemblages collected by two moored sediment traps deployed at the Antarctic zone south of Australia (2000 and 3700 m of depth) for 1 year in 2001–2002. Additionally, seasonal changes in coccolith weights of E. huxleyi populations were estimated using circularly polarised micrographs analysed with C-Calcita software. Our findings indicate that (1) coccolithophore sinking assemblages were nearly monospecific for E. huxleyi morphotype B/C in the Antarctic zone waters in 2001–2002; (2) coccoliths captured by the traps experienced weight and length reduction during summer (December–February); (3) the estimated annual coccolith weight of E. huxleyi at both sediment traps (2.11 ± 0.96 and 2.13 ± 0.91 pg at 2000 and 3700 m) was consistent with previous studies for morphotype B/C in other Southern Ocean settings (Scotia Sea and Patagonian shelf); and (4) coccolithophores accounted for approximately 2–5 % of the annual deep-ocean CaCO3 flux. Our results are the first annual record of coccolithophore abundance, composition and degree of calcification in the Antarctic zone. They provide a baseline against which to monitor coccolithophore responses to changes in the environmental conditions expected for this region in coming decades.



Sign in / Sign up

Export Citation Format

Share Document