scholarly journals Habitat traits and food availability determine the response of marine invertebrates to ocean acidification

2014 ◽  
Vol 20 (3) ◽  
pp. 765-777 ◽  
Author(s):  
Christian Pansch ◽  
Iris Schaub ◽  
Jonathan Havenhand ◽  
Martin Wahl
2017 ◽  
Vol 13 (2) ◽  
pp. 20160797 ◽  
Author(s):  
Sue-Ann Watson ◽  
Jennifer B. Fields ◽  
Philip L. Munday

Ocean acidification poses a range of threats to marine invertebrates; however, the emerging and likely widespread effects of rising carbon dioxide (CO 2 ) levels on marine invertebrate behaviour are still little understood. Here, we show that ocean acidification alters and impairs key ecological behaviours of the predatory cone snail Conus marmoreus . Projected near-future seawater CO 2 levels (975 µatm) increased activity in this coral reef molluscivore more than threefold (from less than 4 to more than 12 mm min −1 ) and decreased the time spent buried to less than one-third when compared with the present-day control conditions (390 µatm). Despite increasing activity, elevated CO 2 reduced predation rate during predator–prey interactions with control-treated humpbacked conch, Gibberulus gibberulus gibbosus ; 60% of control predators successfully captured and consumed their prey, compared with only 10% of elevated CO 2 predators. The alteration of key ecological behaviours of predatory invertebrates by near-future ocean acidification could have potentially far-reaching implications for predator–prey interactions and trophic dynamics in marine ecosystems. Combined evidence that the behaviours of both species in this predator–prey relationship are altered by elevated CO 2 suggests food web interactions and ecosystem structure will become increasingly difficult to predict as ocean acidification advances over coming decades.


2015 ◽  
Vol 35 (7) ◽  
Author(s):  
赵信国 ZHAO Xinguo ◽  
刘广绪 LIU Guangxu

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ceri Lewis ◽  
Robert P. Ellis ◽  
Emily Vernon ◽  
Katie Elliot ◽  
Sam Newbatt ◽  
...  

2009 ◽  
Vol 21 (5) ◽  
pp. 449-456 ◽  
Author(s):  
James B. McClintock ◽  
Robert A. Angus ◽  
Michelle R. Mcdonald ◽  
Charles D. Amsler ◽  
Shane A. Catledge ◽  
...  

AbstractAntarctic calcified macroorganisms are particularly vulnerable to ocean acidification because many are weakly calcified, the dissolution rates of calcium carbonate are inversely related to temperature, and high latitude seas are predicted to become undersaturated in aragonite by the year 2100. We examined the post-mortem dissolution rates of aragonitic and calcitic shells from four species of Antarctic benthic marine invertebrates (two bivalves, one limpet, one brachiopod) and the thallus of a limpet shell-encrusting coralline alga exposed to acidified pH (7.4) or non-acidified pH (8.2) seawater at a constant temperature of 4°C. Within a period of only 14–35 days, shells of all four species held in pH 7.4 seawater had suffered significant dissolution. Despite calcite being 35% less soluble in seawater than aragonite, there was surprisingly, no consistent pattern of calcitic shells having slower dissolution rates than aragonitic shells. Outer surfaces of shells held in pH 7.4 seawater exhibited deterioration by day 35, and by day 56 there was exposure of aragonitic or calcitic prisms within the shell architecture of three of the macroinvertebrate species. Dissolution of coralline algae was confirmed by differences in weight loss in limpet shells with and without coralline algae. By day 56, thalli of the coralline alga held in pH 7.4 displayed a loss of definition of the conceptacle pores and cracking was evident at the zone of interface with limpet shells. Experimental studies are needed to evaluate whether there are adequate compensatory mechanisms in these and other calcified Antarctic benthic macroorganisms to cope with anticipated ocean acidification. In their absence, these organisms, and the communities they comprise, are likely to be among the first to experience the cascading impacts of ocean acidification.


Zygote ◽  
2009 ◽  
Vol 18 (2) ◽  
pp. 103-107 ◽  
Author(s):  
Masaya Morita ◽  
Ryota Suwa ◽  
Akira Iguchi ◽  
Masako Nakamura ◽  
Kazuaki Shimada ◽  
...  

SummaryOcean acidification is now recognized as a threat to marine ecosystems; however, the effect of ocean acidification on fertilization in marine organisms is still largely unknown. In this study, we focused on sperm flagellar motility in broadcast spawning reef invertebrates (a coral and a sea cucumber). Below pH 7.7, the pH predicted to occur within the next 100 years, sperm flagellar motility was seriously impaired in these organisms. Considering that sperm flagellar motility is indispensable for transporting the paternal haploid genome for fertilization, fertilization taking place in seawater may decline in the not too distant future. Urgent surveys are necessary for a better understanding of the physiological consequences of ocean acidification on sperm flagellar motility in a wide range of marine invertebrates.


2015 ◽  
Vol 282 (1810) ◽  
pp. 20150333 ◽  
Author(s):  
Luke F. Dodd ◽  
Jonathan H. Grabowski ◽  
Michael F. Piehler ◽  
Isaac Westfield ◽  
Justin B. Ries

Anthropogenic elevation of atmospheric CO 2 is driving global-scale ocean acidification, which consequently influences calcification rates of many marine invertebrates and potentially alters their susceptibility to predation. Ocean acidification may also impair an organism's ability to process environmental and biological cues. These counteracting impacts make it challenging to predict how acidification will alter species interactions and community structure. To examine effects of acidification on consumptive and behavioural interactions between mud crabs ( Panopeus herbstii ) and oysters ( Crassostrea virginica ), oysters were reared with and without caged crabs for 71 days at three p CO 2 levels. During subsequent predation trials, acidification reduced prey consumption, handling time and duration of unsuccessful predation attempt. These negative effects of ocean acidification on crab foraging behaviour more than offset any benefit to crabs resulting from a reduction in the net rate of oyster calcification. These findings reveal that efforts to evaluate how acidification will alter marine food webs should include quantifying impacts on both calcification rates and animal behaviour.


2021 ◽  
Author(s):  
Megan J Siemann ◽  
Aldo Turco ◽  
Shannon D Brown ◽  
Rita BJ Peachey

Mutualistic associations between benthic marine invertebrates and reef taxa are common. Sponge-dwelling gobies benefit from protection within sponge tubes and greater food availability. Sponge-dwelling gobies are hypothesized to increase sponge pump rates by consuming polychaete parasites, but such increases have not yet been demonstrated. We investigated the association between sponge-dwelling gobies (Elacatinus horsti) and two species of tube sponge (Aplysina lacunosa and Aplysina archeri) in Bonaire, Caribbean Netherlands. We visually assessed goby presence in sponges and used in situ methods with fluorescein dye to measure estimate feeding rates via pump rates. Aplysina archeri were more likely to host a goby than A. lacunosa. For both sponge species, pump rates of tubes with gobies were higher on average than those of tubes without gobies. Our observations, therefore, suggest that E. horsti associations with Aplysina are likely mutualistic relationships in which sponges benefit from higher feeding rates when gobies are present.


2009 ◽  
Vol 6 (2) ◽  
pp. 3109-3131 ◽  
Author(s):  
S. Dupont ◽  
M. C. Thorndyke

Abstract. As a consequence of increasing atmospheric CO2, the world's oceans are becoming more acidic and the rate of change is increasingly fast. This ocean acidification is expected to have significant physiological, ecological and evolutionary consequences at many organizational levels of marine biodiversity. Alarmingly little is known about the long term impact of predicted pH changes (a decrease of −0.3/−0.4 units for the end of this century) on marine invertebrates in general and their early developmental stages in particular, which are believed to be the more sensitive to environmental disturbances, are essential as unit of selection, recruitment and population maintenance. Ocean acidification (OA) research is in its infancy and although the field is moving forward rapidly, good data are still scarce. Available data reveal contradictory results and apparent paradoxes. In this article, we will review available information both from published sources and work in progress, drawing a general picture of what is currently known, with an emphasis on early life-history larval stages. We will also discuss what we need to know in a field with very limited time resources to obtain data and where there is a high expectation that the scientific community should rapidly be able to provide clear answers that help politicians and the public to take action. We will also provide some suggestions about what can be done to protect and rescue future ecosystems.


2020 ◽  
Vol 153 ◽  
pp. 111006 ◽  
Author(s):  
Young Hwan Lee ◽  
Chang-Bum Jeong ◽  
Minghua Wang ◽  
Atsushi Hagiwara ◽  
Jae-Seong Lee

Sign in / Sign up

Export Citation Format

Share Document