Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes

2016 ◽  
Vol 22 (6) ◽  
pp. 2178-2197 ◽  
Author(s):  
Susanne Tautenhahn ◽  
Jeremy W. Lichstein ◽  
Martin Jung ◽  
Jens Kattge ◽  
Stephanie A. Bohlman ◽  
...  

2012 ◽  
Vol 5 (1) ◽  
pp. 83-91 ◽  
Author(s):  
Sara C. P. Lovtang ◽  
Gregg M. Riegel

AbstractWhere the nonnative annual grass downy brome proliferates, it has changed ecosystem processes, such as nutrient, energy, and water cycles; successional pathways; and fire regimes. The objective of this study was to develop a model that predicts the presence of downy brome in Central Oregon and to test whether high presence correlates with greater cover. Understory data from the U.S. Department of Agriculture (USDA) Forest Service's Current Vegetation Survey (CVS) database for the Deschutes National Forest, the Ochoco National Forest, and the Crooked River National Grassland were compiled, and the presence of downy brome was determined for 1,092 systematically located plots. Logistic regression techniques were used to develop models for predicting downy brome populations. For the landscape including the eastside of the Cascade Mountains to the northwestern edge of the Great Basin, the following were selected as the best predictors of downy brome: low average March precipitation, warm minimum May temperature, few total trees per acre, many western junipers per acre, and a short distance to nearest road. The concordance index = 0.92. Using the equation from logistic regression, a probability for downy brome infestation was calculated for each CVS plot. The plots were assigned to a plant association group (PAG), and the average probability was calculated for the PAGs in which the CVS plots were located. This method could be duplicated in other areas where vegetation inventories take place.



1982 ◽  
Vol 30 (6) ◽  
pp. 659 ◽  
Author(s):  
MJ Brown ◽  
FD Podger

The floristic differences found in vegetation ranging from sedgeland-heath to rainforest were sampled by the placement of 80 quadrats in an area 2 km2 near Bathurst Harbour, Tasmania. A direct gradient analysis using the time since last fire as the major axis of variation suggests that the changing species composition of sites is both gradational and fire-related. This interpretation is supported by a point- centred quarter analysis of the forested communities and by Principal Coordinates and Detrended Correspondence Analyses of the entire vegetation sequence. Previous descriptive models based on correlations between he frequency and structural formations are confirmed by this study. A broad correlation between fire frequency and floristic associations within non-forested vegetation is also demonstrated. However, explanation of detailed patterns requires consideration of the total fire regime (including duration and intensity of fire) and its interaction with edaphic factors. For example, fires which burn in peat lead to hysteresis in the successional pathways.



Author(s):  
Karen J. Esler ◽  
Anna L. Jacobsen ◽  
R. Brandon Pratt

Extensive habitat loss and habitat conversion has occurred across all mediterranean-type climate (MTC) regions, driven by increasing human populations who have converted large tracts of land to production, transport, and residential use (land-use, land-cover change) while simultaneously introducing novel forms of disturbance to natural landscapes. Remaining habitat, often fragmented and in isolated or remote (mountainous) areas, is threatened and degraded by altered fire regimes, introduction of invasive species, nutrient enrichment, and climate change. The types and impacts of these threats vary across MTC regions, but overall these drivers of change show little signs of abatement and many have the potential to interact with MTC region natural systems in complex ways.



Author(s):  
Matthew C. Fitzpatrick ◽  
Aaron M. Ellison

Climatic change likely will exacerbate current threats to carnivorous plants. However, estimating the severity of climatic change is challenged by the unique ecology of carnivorous plants, including habitat specialization, dispersal limitation, small ranges, and small population sizes. We discuss and apply methods for modeling species distributions to overcome these challenges and quantify the vulnerability of carnivorous plants to rapid climatic change. Results suggest that climatic change will reduce habitat suitability for most carnivorous plants. Models also project increases in habitat suitability for many species, but the extent to which these increases may offset habitat losses will depend on whether individuals can disperse to and establish in newly suitable habitats outside of their current distribution. Reducing existing stressors and protecting habitats where numerous carnivorous plant species occur may ameliorate impacts of climatic change on this unique group of plants.



2021 ◽  
Author(s):  
Maïlys Gauthier ◽  
Guillaume Le Goff ◽  
Bertrand Launay ◽  
Christophe Douady ◽  
Thibault Datry




Sign in / Sign up

Export Citation Format

Share Document