Transformation

Author(s):  
Karen J. Esler ◽  
Anna L. Jacobsen ◽  
R. Brandon Pratt

Extensive habitat loss and habitat conversion has occurred across all mediterranean-type climate (MTC) regions, driven by increasing human populations who have converted large tracts of land to production, transport, and residential use (land-use, land-cover change) while simultaneously introducing novel forms of disturbance to natural landscapes. Remaining habitat, often fragmented and in isolated or remote (mountainous) areas, is threatened and degraded by altered fire regimes, introduction of invasive species, nutrient enrichment, and climate change. The types and impacts of these threats vary across MTC regions, but overall these drivers of change show little signs of abatement and many have the potential to interact with MTC region natural systems in complex ways.

2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Adelle Thomas ◽  
Emily Theokritoff ◽  
Alexandra Lesnikowski ◽  
Diana Reckien ◽  
Kripa Jagannathan ◽  
...  

AbstractConstraints and limits to adaptation are critical to understanding the extent to which human and natural systems can successfully adapt to climate change. We conduct a systematic review of 1,682 academic studies on human adaptation responses to identify patterns in constraints and limits to adaptation for different regions, sectors, hazards, adaptation response types, and actors. Using definitions of constraints and limits provided by the Intergovernmental Panel on Climate Change (IPCC), we find that most literature identifies constraints to adaptation but that there is limited literature focused on limits to adaptation. Central and South America and Small Islands generally report greater constraints and both hard and soft limits to adaptation. Technological, infrastructural, and ecosystem-based adaptation suggest more evidence of constraints and hard limits than other types of responses. Individuals and households face economic and socio-cultural constraints which also inhibit behavioral adaptation responses and may lead to limits. Finance, governance, institutional, and policy constraints are most prevalent globally. These findings provide early signposts for boundaries of human adaptation and are of high relevance for guiding proactive adaptation financing and governance from local to global scales.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Daniel Escobar-Camacho ◽  
Paulina Rosero ◽  
Mauricio Castrejón ◽  
Carlos F. Mena ◽  
Francisco Cuesta

AbstractThe unique marine and terrestrial ecosystems of the Galapagos Islands are highly vulnerable to human-based drivers of change, including the introduction of invasive species, unsustainable tourism, illegal fishing, overexploitation of ecosystem services, and climate change. These drivers can interact with climate-based drivers such as El Niño-Southern Oscillation (ENSO) at multiple temporal and spatial scales, exacerbating their negative impacts on already fragile ecosystems and the socioeconomic system of the Archipelago. In this review, we performed a literature review based on published literature from 1945 to 2020 and local and global climate databases to analyze drivers of change in the Galapagos. We developed and applied a spatial impact assessment model to identify high-ecological value areas with high sensitivity and exposure scores to environmental change drivers. We identified 13 priority HEVA that encompass ca. 23% (14,715 km2) of the Galapagos Archipelago, distributed in nearly 3% of the Galapagos Marine Reserve and 20% Galapagos National Park. Current and future impacts are likely to concentrate on the inhabited islands’ highlands, whereas marine impacts concentrate along most of the Galapagos Islands’ shorelines. These results are important for guiding the design and implementation of adaptation measures aimed at increasing ecosystem resilience and human adaptive capacity in the face of global environmental change. Overall, these results will be valuable in their application for preserving Galapagos biota, securing the provision of vital ecosystem services for resident human populations, and sustaining the nature-based tourism industry.


Climate ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 83
Author(s):  
Geofrey Gabiri ◽  
Bernd Diekkrüger ◽  
Kristian Näschen ◽  
Constanze Leemhuis ◽  
Roderick van der Linden ◽  
...  

The impact of climate and land use/land cover (LULC) change continues to threaten water resources availability for the agriculturally used inland valley wetlands and their catchments in East Africa. This study assessed climate and LULC change impacts on the hydrological processes of a tropical headwater inland valley catchment in Uganda. The hydrological model Soil and Water Assessment Tool (SWAT) was applied to analyze climate and LULC change impacts on the hydrological processes. An ensemble of six regional climate models (RCMs) from the Coordinated Regional Downscaling Experiment for two Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5, were used for climate change assessment for historical (1976–2005) and future climate (2021–2050). Four LULC scenarios defined as exploitation, total conservation, slope conservation, and protection of headwater catchment were considered. The results indicate an increase in precipitation by 7.4% and 21.8% of the annual averages in the future under RCP4.5 and RCP8.5, respectively. Future wet conditions are more pronounced in the short rainy season than in the long rainy season. Flooding intensity is likely to increase during the rainy season with low flows more pronounced in the dry season. Increases in future annual averages of water yield (29.0% and 42.7% under RCP4.5 and RCP8.5, respectively) and surface runoff (37.6% and 51.8% under RCP4.5 and RCP8.5, respectively) relative to the historical simulations are projected. LULC and climate change individually will cause changes in the inland valley hydrological processes, but more pronounced changes are expected if the drivers are combined, although LULC changes will have a dominant influence. Adoption of total conservation, slope conservation and protection of headwater catchment LULC scenarios will significantly reduce climate change impacts on water resources in the inland valley. Thus, if sustainable climate-smart management practices are adopted, the availability of water resources for human consumption and agricultural production will increase.


Ecography ◽  
2016 ◽  
Vol 40 (5) ◽  
pp. 606-617 ◽  
Author(s):  
Adam M. Young ◽  
Philip E. Higuera ◽  
Paul A. Duffy ◽  
Feng Sheng Hu

2021 ◽  
Author(s):  
Jie Zhao ◽  
Chao Yue ◽  
Philippe Ciais ◽  
Xin Hou ◽  
Qi Tian

<p>Wildfire is the most prevalent natural disturbance in the North American boreal (BNA) forest and can cause post-fire land surface temperature change (ΔLST<sub>fire</sub>) through biophysical processes. Fire regimes, such as fire severity, fire intensity and percentage of burned area (PBA), might affect ΔLST<sub>fire</sub> through their impacts on post-fire vegetation damage. However, the difference of the influence of different fire regimes on the ΔLST<sub>fire</sub> has not been quantified in previous studies, despite ongoing and projected changes in fire regimes in BNA in association with climate change. Here we employed satellite observations and a space-and-time approach to investigate diurnal ΔLST<sub>fire</sub> one year after fire across BNA. We further examined potential impacts of three fire regimes (i.e., fire intensity, fire severity and PBA) and latitude on ΔLST<sub>fire</sub> by simple linear regression analysis and multiple linear regression analysis in a stepwise manner. Our results demonstrated pronounced asymmetry in diurnal ΔLST<sub>fire</sub>, characterized by daytime warming in contrast to nighttime cooling over most BNA. Such diurnal ΔLST<sub>fire</sub> also exhibits a clear latitudinal pattern, with stronger daytime warming and nighttime cooling one year after fire in lower latitudes, whereas in high latitudes fire effects are almost neutral. Among the fire regimes, fire severity accounted for the most (43.65%) of the variation of daytime ΔLST<sub>fire</sub>, followed by PBA (11.6%) and fire intensity (8.5%). The latitude is an important factor affecting the influence of fire regimes on daytime ΔLST<sub>fire</sub>. The sensitivity of fire intensity and PBA impact on daytime ΔLST<sub>fire</sub> decreases with latitude. But only fire severity had a significant effect on nighttime ΔLST<sub>fire</sub> among three fire regimes. Our results highlight important fire regime impacts on daytime ΔLST<sub>fire</sub>, which might play a critical role in catalyzing future boreal climate change through positive feedbacks between fire regime and post-fire surface warming.</p>


2021 ◽  
Vol 20 (1) ◽  
pp. 138-158
Author(s):  
Umer Khayyam ◽  
Rida Bano ◽  
Shahzad Alvi

Abstract Global climate change is one of the main threats facing humanity and the impacts on natural systems as well as humans are expected to be severe. People can take action against these threats through two approaches: mitigation and adaptation. However, mitigations and adaptations are contingent on the level of motivation and awareness, as well as socio-economic and environmental conditions. This study examined personal perception and motivation to mitigate and adapt to climate change among the university students in the capital city of Pakistan. We divided the respondents into social sciences, applied sciences and natural sciences, using logistic regression analysis. The results indicated that students who perceive severity, benefits from preparation, and have more information about climate change were 1.57, 4.98 and 1.63 times more likely to take mitigation and 1.47, 1.14 and 1.17 times more likely to take adaptation measures, respectively. Students who perceived self-efficacy, obstacles to protect from the negative consequences of climate change and who belonged to affluent families were more likely to take mitigation measures and less likely to take adaptation strategies. However, mitigation and adaptation were unaffected by age, gender and study discipline.


2018 ◽  
Vol 6 (1-2) ◽  
pp. 117-141 ◽  
Author(s):  
Timothy Crownshaw ◽  
Caitlin Morgan ◽  
Alison Adams ◽  
Martin Sers ◽  
Natália Britto dos Santos ◽  
...  

Maintaining steady growth remains the central goal of economic policy in most nations. However, as evidenced by the advent of the Anthropocene, the global economy has expanded to a point where limits to growth are appearing. Facing the end of growth requires a careful re-examination of plausible future conditions. We draw on a diverse literature to present an interdisciplinary exploration of post-growth conditions in the areas of climate change, ecological impacts, governance, and education, finding that such conditions may invalidate many prevalent assumptions regarding the future. The post-growth world, while subject to significant uncertainty and heterogeneity, will be characterized by profound hazards and discontinuities for both human and natural systems. Furthermore, we argue that an economic paradigm change will be predicated on an involuntary and unplanned cessation of growth. This implies a necessary strategic expansion of the heterodox economic discourse to formulate appropriate responses in view of likely post-growth realities.


Sign in / Sign up

Export Citation Format

Share Document