scholarly journals Land use intensity, rather than plant species richness, affects the leaching risk of multiple nutrients from permanent grasslands

2018 ◽  
Vol 24 (7) ◽  
pp. 2828-2840 ◽  
Author(s):  
Valentin H. Klaus ◽  
Till Kleinebecker ◽  
Verena Busch ◽  
Markus Fischer ◽  
Norbert Hölzel ◽  
...  
2008 ◽  
Vol 276 (1658) ◽  
pp. 903-909 ◽  
Author(s):  
D Kleijn ◽  
F Kohler ◽  
A Báldi ◽  
P Batáry ◽  
E.D Concepción ◽  
...  

Worldwide agriculture is one of the main drivers of biodiversity decline. Effective conservation strategies depend on the type of relationship between biodiversity and land-use intensity, but to date the shape of this relationship is unknown. We linked plant species richness with nitrogen (N) input as an indicator of land-use intensity on 130 grasslands and 141 arable fields in six European countries. Using Poisson regression, we found that plant species richness was significantly negatively related to N input on both field types after the effects of confounding environmental factors had been accounted for. Subsequent analyses showed that exponentially declining relationships provided a better fit than linear or unimodal relationships and that this was largely the result of the response of rare species (relative cover less than 1%). Our results indicate that conservation benefits are disproportionally more costly on high-intensity than on low-intensity farmland. For example, reducing N inputs from 75 to 0 and 400 to 60 kg ha −1  yr −1 resulted in about the same estimated species gain for arable plants. Conservation initiatives are most (cost-)effective if they are preferentially implemented in extensively farmed areas that still support high levels of biodiversity.


2019 ◽  
Vol 107 (6) ◽  
pp. 2635-2649 ◽  
Author(s):  
Deborah Schäfer ◽  
Valentin H. Klaus ◽  
Till Kleinebecker ◽  
Runa S. Boeddinghaus ◽  
Judith Hinderling ◽  
...  

2008 ◽  
Vol 84 (3-4) ◽  
pp. 200-211 ◽  
Author(s):  
Lotten J. Johansson ◽  
Karin Hall ◽  
Honor C. Prentice ◽  
Margareta Ihse ◽  
Triin Reitalu ◽  
...  

Author(s):  
Andreas Hemp ◽  
Corina Del Fabbro ◽  
Markus Fischer

AbstractOne of the few general patterns in ecology is the increase of species richness with area. However, factors driving species-area relationship (SAR) are under debate, and the role of human-induced changes has been overlooked so far. Furthermore, SAR studies in tropical regions, in particular in multilayered rain forests are scarce. On the other side, studies of global change-induced impacts on biodiversity have become increasingly important, particular in the tropics, where these impacts are especially pronounced. Here, we investigated if area modulates the effect of land use, elevation and canopy on plant species richness. For the first time we studied SAR in multilayered tropical forests considering all functional groups. We selected 13 natural and disturbed habitats on Kilimanjaro in Tanzania, distributed over an elevational range of 3700 m. In each habitat type, we set up three to six modified Whittaker plots. We recorded all plant species in 64 plots and 640 subplots and described SAR using the power function. Area consistently modulated effects of elevation on plant species richness, partly effects of land use but not effects of plant canopy. Thus, area needs to be taken into account when studying elevational plant species richness patterns. In contrast to temperate regions open and forest habitats did not differ in SAR, probably due to a distinct vertical vegetation zonation in tropical forests. Therefore, it is important to consider all vegetation layers including epiphytes when studying SAR in highly structured tropical regions.


Diversity ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Katharina Stein ◽  
Drissa Coulibaly ◽  
Larba Hubert Balima ◽  
Dethardt Goetze ◽  
Karl Eduard Linsenmair ◽  
...  

West African savannas are severely threatened with intensified land use and increasing degradation. Bees are important for terrestrial biodiversity as they provide native plant species with pollination services. However, little information is available regarding their mutualistic interactions with woody plant species. In the first network study from sub-Saharan West Africa, we investigated the effects of land-use intensity and climatic seasonality on plant–bee communities and their interaction networks. In total, we recorded 5686 interactions between 53 flowering woody plant species and 100 bee species. Bee-species richness and the number of interactions were higher in the low compared to medium and high land-use intensity sites. Bee- and plant-species richness and the number of interactions were higher in the dry compared to the rainy season. Plant–bee visitation networks were not strongly affected by land-use intensity; however, climatic seasonality had a strong effect on network architecture. Null-model corrected connectance and nestedness were higher in the dry compared to the rainy season. In addition, network specialization and null-model corrected modularity were lower in the dry compared to the rainy season. Our results suggest that in our study region, seasonal effects on mutualistic network architecture are more pronounced compared to land-use change effects. Nonetheless, the decrease in bee-species richness and the number of plant–bee interactions with an increase in land-use intensity highlights the importance of savanna conservation for maintaining bee diversity and the concomitant provision of ecosystem services.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Andreas Ch. Braun ◽  
Fabian Faßnacht ◽  
Diego Valencia ◽  
Maximiliano Sepulveda

AbstractCentral Chile is an important biodiversity hotspot in Latin America. Biodiversity hotspots are characterised by a high number of endemic species cooccurring with a high level of anthropogenic pressure. In central Chile, the pressure is caused by land-use change, in which near-natural primary and secondary forests are replaced and fragmented by commercial pine and eucalyptus plantations. Large forest fires are another factor that can potentially endanger biodiversity. Usually, environmental hazards, such as wildfires, are part of the regular environmental dynamic and not considered a threat to biodiversity. Nonetheless, this situation may change if land-use change and altered wildfire regimes coerce. Land-use change pressure may destroy landscape integrity in terms of habitat loss and fragmentation, while wildfires may destroy the last remnants of native forests. This study aims to understand the joint effects of land-use change and a catastrophic wildfire on habitat loss and habitat fragmentation of local plant species richness hotspots in central Chile. To achieve this, we apply a combination of ecological fieldwork, remote sensing, and geoprocessing to estimate the spread and spatial patterns of biodiverse habitats under current and past land-use conditions and how these habitats were altered by land-use change and by a single large wildfire event. We show that land-use change has exceeded the wildfire’s impacts on diverse habitats. Despite the fact that the impact of the wildfire was comparably small here, wildfire may coerce with land-use change regarding pressure on biodiversity hotspots. Our findings can be used to develop restoration concepts, targeting on an increase of habitat diversity within currently fire-cleared areas and evaluate their benefits for plant species richness conservation.


Sign in / Sign up

Export Citation Format

Share Document