Non-linear effects of landscape on pollination service and plant species richness in a peri-urban territory with urban and agricultural land use

2021 ◽  
pp. 127454
Author(s):  
Estelle Renaud ◽  
Virginie Heraudet ◽  
Muriel Deparis ◽  
Hugo Basquin ◽  
Carmen Bessa-Gomes ◽  
...  
2018 ◽  
Vol 24 (7) ◽  
pp. 2828-2840 ◽  
Author(s):  
Valentin H. Klaus ◽  
Till Kleinebecker ◽  
Verena Busch ◽  
Markus Fischer ◽  
Norbert Hölzel ◽  
...  

2008 ◽  
Vol 84 (3-4) ◽  
pp. 200-211 ◽  
Author(s):  
Lotten J. Johansson ◽  
Karin Hall ◽  
Honor C. Prentice ◽  
Margareta Ihse ◽  
Triin Reitalu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. Pellegrini ◽  
M. Buccheri ◽  
F. Martini ◽  
F. Boscutti

AbstractUnveiling the processes driving exotic plant invasion represent a central issue in taking decisions aimed at constraining the loss of biodiversity and related ecosystem services. The invasion success is often linked to anthropogenic land uses and warming due to climate change. We studied the responses of native versus casual and naturalised exotic species richness to land uses and climate at the landscape level, relying on a large floristic survey undertaken in North - Eastern Italy. Both climate and land use drove exotic species richness. Our results suggest that the success of plant invasion at this scale is mainly due to warm climatic conditions and the extent of urban and agricultural land, but with different effects on casual and naturalized exotic species. The occurrence of non-linear trends showed that a small percentage of extensive agricultural land in the landscape may concurrently reduce the number of exotic plant while sustaining native plant diversity. Plant invasion could be potentially limited by land management, mainly focusing on areas with extensive agricultural land use. A more consciousness land management is more and more commonly required by local administrations. According to our results, a shift of intensive to extensive agricultural land, by implementing green infrastructures, seems to be a win–win solution favouring native species while controlling the oversimplification of the flora due to plant invasion.


Author(s):  
Andreas Hemp ◽  
Corina Del Fabbro ◽  
Markus Fischer

AbstractOne of the few general patterns in ecology is the increase of species richness with area. However, factors driving species-area relationship (SAR) are under debate, and the role of human-induced changes has been overlooked so far. Furthermore, SAR studies in tropical regions, in particular in multilayered rain forests are scarce. On the other side, studies of global change-induced impacts on biodiversity have become increasingly important, particular in the tropics, where these impacts are especially pronounced. Here, we investigated if area modulates the effect of land use, elevation and canopy on plant species richness. For the first time we studied SAR in multilayered tropical forests considering all functional groups. We selected 13 natural and disturbed habitats on Kilimanjaro in Tanzania, distributed over an elevational range of 3700 m. In each habitat type, we set up three to six modified Whittaker plots. We recorded all plant species in 64 plots and 640 subplots and described SAR using the power function. Area consistently modulated effects of elevation on plant species richness, partly effects of land use but not effects of plant canopy. Thus, area needs to be taken into account when studying elevational plant species richness patterns. In contrast to temperate regions open and forest habitats did not differ in SAR, probably due to a distinct vertical vegetation zonation in tropical forests. Therefore, it is important to consider all vegetation layers including epiphytes when studying SAR in highly structured tropical regions.


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 886
Author(s):  
José R. Arévalo ◽  
Juan A. Encina-Domínguez ◽  
Sait Juanes-Márquez ◽  
Perpetuo Álvarez-Vázquez ◽  
Juan A. Nuñez-Colima ◽  
...  

Abandonment of agricultural land is currently one of the main land use changes in developed countries. This change has an impact at the economic level and from the point of view of conservation. Therefore, recovering these areas after abandonment is, in many cases, necessary for ecological restoration, especially as they can be invaded by exotic or dominant species, preventing recovery of the original plant species community. The objective of this study is to examine changes in plant species richness and composition after the application of different treatments to eliminate Amelichloa clandestina, a species that dominates pastures abandoned 12 years ago in an area located in northern Mexico. The area is a semi-desert grassland dominated by buffalo grass Bouteloua dactyloides. We used different eradication techniques such as burning, herbicides, and clipping. Although the treatments had significant effects on species richness and composition and resulted in a relative reduction of the target species, the abundance of Amelichloa clandestina was still substantial. Burning is effective, favoring the increase of species richness and provoking a lower presence of A. clandestine but with a dominance of annuals. The most important impact on the total cover of A. clandestina is shown by the herbicide treatment. However, monitoring of these areas will still be required to consider the long-term impact and success of treatments.


2008 ◽  
Vol 276 (1658) ◽  
pp. 903-909 ◽  
Author(s):  
D Kleijn ◽  
F Kohler ◽  
A Báldi ◽  
P Batáry ◽  
E.D Concepción ◽  
...  

Worldwide agriculture is one of the main drivers of biodiversity decline. Effective conservation strategies depend on the type of relationship between biodiversity and land-use intensity, but to date the shape of this relationship is unknown. We linked plant species richness with nitrogen (N) input as an indicator of land-use intensity on 130 grasslands and 141 arable fields in six European countries. Using Poisson regression, we found that plant species richness was significantly negatively related to N input on both field types after the effects of confounding environmental factors had been accounted for. Subsequent analyses showed that exponentially declining relationships provided a better fit than linear or unimodal relationships and that this was largely the result of the response of rare species (relative cover less than 1%). Our results indicate that conservation benefits are disproportionally more costly on high-intensity than on low-intensity farmland. For example, reducing N inputs from 75 to 0 and 400 to 60 kg ha −1  yr −1 resulted in about the same estimated species gain for arable plants. Conservation initiatives are most (cost-)effective if they are preferentially implemented in extensively farmed areas that still support high levels of biodiversity.


Sign in / Sign up

Export Citation Format

Share Document