Timing and magnitude of climatic extremes differentially elevate mortality but enhance recovery in a fish population

2021 ◽  
Author(s):  
Ming‐Chih Chiu ◽  
Shih‐Hsun Chang ◽  
Yu‐Ting Yen ◽  
Lin‐Yan Liao ◽  
Hsing‐Juh Lin
Fact Sheet ◽  
2002 ◽  
Author(s):  
Donald L. DeAngelis ◽  
Louis J. Gross ◽  
Holly Gaff ◽  
Rene Salinas
Keyword(s):  

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1569
Author(s):  
Kateřina Šumberová ◽  
Ondřej Vild ◽  
Michal Ducháček ◽  
Martina Fabšičová ◽  
Jan Potužák ◽  
...  

We studied macrophyte and diatom assemblages and a range of environmental factors in the large hypertrophic Dehtář fishpond (Southern Bohemia, Czech Republic) over the course of several growing seasons. The spatial diversity of the environment was considered when collecting diatoms and water samples in three distinct parts of the fishpond, where automatic sensor stations continually measuring basic factors were established. Macrophytes were mapped in 30 segments of the fishpond littoral altogether. High species richness and spatiotemporal variability were found in assemblages of these groups of autotrophs. Water level fluctuations, caused by the interaction of fish farming management and climatic extremes, were identified as one of the most important factors shaping the structure and species composition of diatom and macrophyte assemblages. The distance of the sampling sites from large inflows reflected well the spatial variability within the fishpond, with important differences in duration of bottom drainage and exposure to disturbances in different parts of the fishpond. Disturbances caused by intensive wave action are most probably a crucial factor allowing the coexistence of species with different nutrient requirements under the hypertrophic conditions of the Dehtář fishpond. Due to a range of variables tested and climatic extremes encountered, our study may be considered as a basis for predictive model constructions in similar hypertrophic water bodies under a progressing climate change.


Author(s):  
Jemima Connell ◽  
Mark A. Hall ◽  
Dale G. Nimmo ◽  
Simon J. Watson ◽  
Michael F. Clarke

1978 ◽  
Vol 35 (2) ◽  
pp. 184-189 ◽  
Author(s):  
S. J. Westrheim ◽  
W. E. Ricker

Consider two representative samples of fish taken in different years from the same fish population, this being a population in which year-class strength varies. For the "parental" sample the length and age of the fish are determined and are used to construct an "age–length key," the fractions of the fish in each (short) length interval that are of each age. For the "filial" sample only the length is measured, and the parental age–length key is used to compute the corresponding age distribution. Trials show that the age–length key will reproduce the age-frequency distribution of the filial sample without systematic bias only if there is no overlap in length between successive ages. Where there is much overlap, the age–length key will compute from the filial length-frequency distribution approximately the parental age distribution. Additional bias arises if the rate of growth if a year-class is affected by its abundance, or if the survival rate in the population changes. The length of the fish present in any given part of a population's range can vary with environmental factors such as depth of the water; nevertheless, a sample taken in any part of that range can be used to compute age from the length distribution of a sample taken at the same time in any other part of the range, without systematic bias. But this of course is not likely to be true of samples taken from different populations of the species. Key words: age–length key, bias, Pacific ocean perch, Sebastes alutus


Sign in / Sign up

Export Citation Format

Share Document