Surface chlorophyll concentration as a mesoplankton biomass assessment tool in the Southern Ocean region

Author(s):  
Alexander L. Vereshchaka ◽  
Anastasiia A. Lunina ◽  
Alexander S. Mikaelyan

2021 ◽  
Author(s):  
Lotfi Aouf ◽  
Daniele Hauser ◽  
Stephane Law-Chune ◽  
Bertrand chapron ◽  
Alice Dalphinet ◽  
...  

<p>The Southern ocean is a complex ocean region with uncertainties related to surface wind forcing and fluxes exchanges at the air/sea interface. The improvement of wind wave generation in this ocean region is crucial for climate studies. With CFOSAT satellite mission, the SWIM instrument provides directional wave spectra for wavelengths from 70 to 500 m, which shed light on the role of correcting the wave direction and peak wave number of dominant wave trains in the wind-waves growth phase. This consequently induced a better energy transfer between waves and a significant bias reduction of wave height in the Southern Ocean (Aouf et al. 2020). The objective of this work is to extend the analysis of the impact of the assimilation of wave number components from SWIM wave partitions on the ocean/wave coupling. To this end, coupled simulations of the wave model MFWAM and the ocean model NEMO are performed during the southern winter period of 2019 (May-July). We have examined the MFWAM/NEMO coupling with and without the assimilation of the SWIM mean wave number components. Several coupling processes related to Stokes drift, momentum flux stress and wave breaking inducing turbulence in the ocean mixing layer have been analyzed. We also compared the coupled runs with a control run without wave forcing in order to evaluate the impact of the assimilation. The results of coupled simulations have been validated with satellite Sea Surface Temperature and available surface currents data over the southern ocean. We also investigated the impact of the assimilation during severe storms with unlimited fetch conditions.</p><p>Further discussions and conclusions will be commented in the final paper.</p><p>Aouf L., New directional wave satellite observations : Towards improved wave forecasting and climate description in Southern Ocean, Geophysical Research Letters, DOI: 10.1029/2020GL091187 (in production).</p><p> </p><div> <div> <div></div> <div>What do you want to do ?</div> New mail</div> </div><div><img></div>





Palaeoworld ◽  
2008 ◽  
Vol 17 (1) ◽  
pp. 57-82 ◽  
Author(s):  
Girish Kumar Sharma ◽  
Kozo Takahashi
Keyword(s):  


2010 ◽  
Vol 2 (2) ◽  
pp. 177-187 ◽  
Author(s):  
D. Pierrot ◽  
P. Brown ◽  
S. Van Heuven ◽  
T. Tanhua ◽  
U. Schuster ◽  
...  

Abstract. Water column data of carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 cruises in the Arctic Mediterranean Seas, Atlantic and Southern Ocean have been retrieved and merged in a new data base: the CARINA (CARbon IN the Atlantic) Project. These data have gone through rigorous quality control (QC) procedures so as to improve the quality and consistency of the data as much as possible. Secondary quality control, which involved objective study of data in order to quantify systematic differences in the reported values, was performed for the pertinent parameters in the CARINA data base. Systematic biases in the data have been tentatively corrected in the data products. The products are three merged data files with measured, adjusted and interpolated data of all cruises for each of the three CARINA regions (Arctic Mediterranean Seas, Atlantic and Southern Ocean). Ninety-eight cruises were conducted in the "Atlantic" defined as the region south of the Greenland-Iceland-Scotland Ridge and north of about 30° S. Here we report the details of the secondary QC which was done on the total dissolved inorganic carbon (TCO2) data and the adjustments that were applied to yield the final data product in the Atlantic. Procedures of quality control – including crossover analysis between stations and inversion analysis of all crossover data – are briefly described. Adjustments were applied to TCO2 measurements for 17 of the cruises in the Atlantic Ocean region. With these adjustments, the CARINA data base is consistent both internally as well as with GLODAP data, an oceanographic data set based on the WOCE Hydrographic Program in the 1990s, and is now suitable for accurate assessments of, for example, regional oceanic carbon inventories, uptake rates and model validation.





2006 ◽  
Vol 111 (C5) ◽  
Author(s):  
Guillaume Maze ◽  
Fabio D'Andrea ◽  
Alain Colin de Verdière


2016 ◽  
Vol 16 (4) ◽  
pp. 2185-2206 ◽  
Author(s):  
R. S. Humphries ◽  
A. R. Klekociuk ◽  
R. Schofield ◽  
M. Keywood ◽  
J. Ward ◽  
...  

Abstract. Better characterisation of aerosol processes in pristine, natural environments, such as Antarctica, have recently been shown to lead to the largest reduction in uncertainties in our understanding of radiative forcing. Our understanding of aerosols in the Antarctic region is currently based on measurements that are often limited to boundary layer air masses at spatially sparse coastal and continental research stations, with only a handful of studies in the vast sea-ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the icebreaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the polar front, with mean polar cell concentrations of 1130 cm−3 – higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low-pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air masses quickly from the free troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea-ice boundary layer air masses travelled equatorward into the low-albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei which, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and their transport pathways described here, could help reduce the discrepancy currently present between simulations and observations of cloud and aerosol over the Southern Ocean.



2011 ◽  
Vol 8 (4) ◽  
pp. 1891-1936
Author(s):  
S. Kravtsov ◽  
D. Kondrashov ◽  
I. Kamenkovich ◽  
M. Ghil

Abstract. This study employs NASA's recent satellite measurements of sea-surface temperature (SST) and sea-level wind (SLW) with missing data filled-in by Singular Spectrum Analysis (SSA), to construct empirical models that capture both intrinsic and SST-dependent aspects of SLW variability. The model construction methodology uses a number of algorithmic innovations that are essential in providing stable estimates of model's propagator. The best model tested herein is able to faithfully represent the time scales and spatial patterns of anomalies associated with a number of distinct processes. These processes range from the daily synoptic variability to interannual signals presumably associated with oceanic or coupled dynamics. Comparing the simulations of an SLW model forced by the observed SST anomalies with the simulations of an SLW-only model provides preliminary evidence for the climatic behavior characterized by the ocean driving the atmosphere in the Southern Ocean region.



Author(s):  
T. Tanhua, ◽  
A. Olsen, ◽  
M. Hoppema, ◽  
S. Jutterstrom, ◽  
C. Schirnick, ◽  
...  
Keyword(s):  




Sign in / Sign up

Export Citation Format

Share Document